Advertisement

Rotating traversable wormholes in AdS

  • Elena CaceresEmail author
  • Anderson Seigo Misobuchi
  • Ming-Lei Xiao
Open Access
Regular Article - Theoretical Physics

Abstract

In this work we explore the effect of rotation in the size of a traversable wormhole obtained via a double trace boundary deformation. We find that at fixed temperature the size of the wormhole increases with the angular momentum J/M ℓ. The amount of information that can be sent through the wormhole increases as well. However, for the type of interaction considered, the wormhole closes as the temperature approaches the extremal limit. We also briefly consider the scenario where the boundary coupling is not spatially homogeneous and show how this is reflected in the wormhole opening.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Graham and K.D. Olum, Achronal averaged null energy condition, Phys. Rev. D 76 (2007) 064001 [arXiv:0705.3193] [INSPIRE].
  2. [2]
    W.R. Kelly and A.C. Wall, Holographic proof of the averaged null energy condition, Phys. Rev. D 90 (2014) 106003 [Erratum ibid. D 91 (2015) 069902] [arXiv:1408.3566] [INSPIRE].
  3. [3]
    A.C. Wall, Proving the Achronal Averaged Null Energy Condition from the Generalized Second Law, Phys. Rev. D 81 (2010) 024038 [arXiv:0910.5751] [INSPIRE].
  4. [4]
    P. Gao, D.L. Jafferis and A. Wall, Traversable Wormholes via a Double Trace Deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M.S. Morris, K.S. Thorne and U. Yurtsever, Wormholes, Time Machines and the Weak Energy Condition, Phys. Rev. Lett. 61 (1988) 1446 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.M. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].
  7. [7]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  8. [8]
    A. Kitaev, A simple model of quantum holography, talk given at Entanglement in Strongly-Correlated Quantum Matter, KITP, Santa Barbara, U.S.A., 6 April-2 July 2015 and online at http://online.kitp.ucsb.edu/online/entangled15/.
  9. [9]
    B. Czech, L. Lamprou and L. Susskind, Entanglement Holonomies, arXiv:1807.04276 [INSPIRE].
  10. [10]
    J. De Boer, S.F. Lokhande, E. Verlinde, R. Van Breukelen and K. Papadodimas, On the interior geometry of a typical black hole microstate, arXiv:1804.10580 [INSPIRE].
  11. [11]
    B. Yoshida and N.Y. Yao, Disentangling Scrambling and Decoherence via Quantum Teleportation, arXiv:1803.10772 [INSPIRE].
  12. [12]
    B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol, arXiv:1710.03363 [INSPIRE].
  13. [13]
    A. Almheiri, A. Mousatov and M. Shyani, Escaping the Interiors of Pure Boundary-State Black Holes, arXiv:1803.04434 [INSPIRE].
  14. [14]
    L. Susskind and Y. Zhao, Teleportation through the wormhole, Phys. Rev. D 98 (2018) 046016 [arXiv:1707.04354] [INSPIRE].
  15. [15]
    R. van Breukelen and K. Papadodimas, Quantum teleportation through time-shifted AdS wormholes, JHEP 08 (2018) 142 [arXiv:1708.09370] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    D. Bak, C. Kim and S.-H. Yi, Bulk view of teleportation and traversable wormholes, JHEP 08 (2018) 140 [arXiv:1805.12349] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Miyaji, Time Evolution after Double Trace Deformation, JHEP 10 (2018) 074 [arXiv:1806.10807] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
  19. [19]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Hemming, E. Keski-Vakkuri and P. Kraus, Strings in the extended BTZ space-time, JHEP 10 (2002) 006 [hep-th/0208003] [INSPIRE].
  21. [21]
    V. Balasubramanian and T.S. Levi, Beyond the veil: Inner horizon instability and holography, Phys. Rev. D 70 (2004) 106005 [hep-th/0405048] [INSPIRE].
  22. [22]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    C. Krishnan, Tomograms of Spinning Black Holes, Phys. Rev. D 80 (2009) 126014 [arXiv:0911.0597] [INSPIRE].
  24. [24]
    T.S. Levi and S.F. Ross, Holography beyond the horizon and cosmic censorship, Phys. Rev. D 68 (2003) 044005 [hep-th/0304150] [INSPIRE].
  25. [25]
    I. Ichinose and Y. Satoh, Entropies of scalar fields on three-dimensional black holes, Nucl. Phys. B 447 (1995) 340 [hep-th/9412144] [INSPIRE].
  26. [26]
    T. Azeyanagi, T. Nishioka and T. Takayanagi, Near Extremal Black Hole Entropy as Entanglement Entropy via AdS 2 /CF T 1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956] [INSPIRE].
  27. [27]
    J.M. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, Prog. Theor. Exp. Phys. 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  28. [28]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    H.L. Verlinde and E.P. Verlinde, Scattering at Planckian energies, Nucl. Phys. B 371 (1992) 246 [hep-th/9110017] [INSPIRE].
  31. [31]
    D.N. Kabat and M. Ortiz, Eikonal quantum gravity and Planckian scattering, Nucl. Phys. B 388 (1992) 570 [hep-th/9203082] [INSPIRE].
  32. [32]
    T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP 09 (2016) 038 [arXiv:1605.08072] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    T. Andrade, S. Fischetti, D. Marolf, S.F. Ross and M. Rozali, Entanglement and correlations near extremality: CFTs dual to Reissner-Nordström AdS 5, JHEP 04 (2014) 023 [arXiv:1312.2839] [INSPIRE].
  34. [34]
    S. Leichenauer, Disrupting Entanglement of Black Holes, Phys. Rev. D 90 (2014) 046009 [arXiv:1405.7365] [INSPIRE].
  35. [35]
    Z. Fu, B. Grado-White and D. Marolf, A perturbative perspective on self-supporting wormholes, arXiv:1807.07917 [INSPIRE].
  36. [36]
    S. Aminneborg, I. Bengtsson, D. Brill, S. Holst and P. Peldan, Black holes and wormholes in (2 + 1)-dimensions, Class. Quant. Grav. 15 (1998) 627 [gr-qc/9707036] [INSPIRE].
  37. [37]
    V. Balasubramanian, P. Hayden, A. Maloney, D. Marolf and S.F. Ross, Multiboundary Wormholes and Holographic Entanglement, Class. Quant. Grav. 31 (2014) 185015 [arXiv:1406.2663] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    V. Balasubramanian, J.R. Fliss, R.G. Leigh and O. Parrikar, Multi-Boundary Entanglement in Chern-Simons Theory and Link Invariants, JHEP 04 (2017) 061 [arXiv:1611.05460] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    Z. Fu, A. Maloney, D. Marolf, H. Maxfield and Z. Wang, Holographic complexity is nonlocal, JHEP 02 (2018) 072 [arXiv:1801.01137] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    A. Almheiri, T. Anous and A. Lewkowycz, Inside out: meet the operators inside the horizon. On bulk reconstruction behind causal horizons, JHEP 01 (2018) 028 [arXiv:1707.06622] [INSPIRE].
  41. [41]
    J.M. Maldacena, A. Milekhin and F. Popov, Traversable wormholes in four dimensions, arXiv:1807.04726 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Texas at AustinAustinU.S.A.
  2. 2.Institute of Theoretical PhysicsChinese Academy of SciencesBeijingP.R. China

Personalised recommendations