Journal of High Energy Physics

, 2017:75 | Cite as

SO(10) × S4 grand unified theory of flavour and leptogenesis

  • Francisco J. de Anda
  • Stephen F. King
  • Elena PerdomoEmail author
Open Access
Regular Article - Theoretical Physics


We propose a Grand Unified Theory of Flavour, based on SO(10) together with a non-Abelian discrete group S4, under which the unified three quark and lepton 16-plets are unified into a single triplet 3′. The model involves a further discrete group 4 R  ×  4 3 which controls the Higgs and flavon symmetry breaking sectors. The CSD2 flavon vacuum alignment is discussed, along with the GUT breaking potential and the doublet-triplet splitting, and proton decay is shown to be under control. The Yukawa matrices are derived in detail, from renormalisable diagrams, and neutrino masses emerge from the type I seesaw mechanism. A full numerical fit is performed with 15 input parameters generating 19 presently constrained observables, taking into account supersymmetry threshold corrections. The model predicts a normal neutrino mass ordering with a CP oscillation phase of 260°, an atmospheric angle in the first octant and neutrinoless double beta decay with m ββ = 11 meV. We discuss N2 leptogenesis, which fixes the second right-handed neutrino mass to be M2 ≃ 2 × 1011 GeV, in the natural range predicted by the model.


GUT Discrete Symmetries Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  2. [2]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
  3. [3]
    SNO collaboration, Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].
  4. [4]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. 67B (1977) 421 [INSPIRE].
  5. [5]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in the proceedings of the Workshop on unified theory and baryon number in the universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba, Japan (1979).Google Scholar
  6. [6]
    M. Gell-Mann, P. Ramond, R. Slansky, Complex spinors and unified theories, in Supergravity, D.Z. Freedman and P.van Nieuwenhuizen eds., North Holland, Amsterdam, The Netherlands (1979).Google Scholar
  7. [7]
    P. Ramond, The family group in grand unified theories, hep-ph/9809459 [INSPIRE] [C79-02-25].
  8. [8]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  10. [10]
    H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    T. Ohlsson, Neutrino oscillations: celebrating the Nobel prize in physics 2015, Nucl. Phys. B 908 (2016) 1.MathSciNetCrossRefzbMATHADSGoogle Scholar
  12. [12]
    S.F. King, Tri-bimaximal-Cabibbo Mixing, Phys. Lett. B 718 (2012) 136 [arXiv:1205.0506] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    S.F. King, Unified models of neutrinos, flavour and CP-violation, Prog. Part. Nucl. Phys. 94 (2017) 217 [arXiv:1701.04413] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    S.F. King, Models of neutrino mass, mixing and CP-violation, J. Phys. G 42 (2015) 123001 [arXiv:1510.02091] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino mass and mixing: from theory to experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    S.F. King and G.G. Ross, Fermion masses and mixing angles from SU(3) family symmetry, Phys. Lett. B 520 (2001) 243 [hep-ph/0108112] [INSPIRE].
  18. [18]
    S.F. King and G.G. Ross, Fermion masses and mixing angles from SU(3) family symmetry and unification, Phys. Lett. B 574 (2003) 239 [hep-ph/0307190] [INSPIRE].
  19. [19]
    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [INSPIRE].
  20. [20]
    S.F. King and M. Malinsky, A4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [INSPIRE].
  21. [21]
    S. Morisi, M. Picariello and E. Torrente-Lujan, Model for fermion masses and lepton mixing in SO(10) × A 4, Phys. Rev. D 75 (2007) 075015 [hep-ph/0702034] [INSPIRE].
  22. [22]
    F. Bazzocchi, M. Frigerio and S. Morisi, Fermion masses and mixing in models with SO(10) × A 4 symmetry, Phys. Rev. D 78 (2008) 116018 [arXiv:0809.3573] [INSPIRE].Google Scholar
  23. [23]
    C. Hagedorn, M.A. Schmidt and A.Yu. Smirnov, Lepton mixing and cancellation of the Dirac mass hierarchy in SO(10) GUTs with flavor symmetries T(7) and Σ(81), Phys. Rev. D 79 (2009) 036002 [arXiv:0811.2955] [INSPIRE].ADSGoogle Scholar
  24. [24]
    F. Bazzocchi and I. de Medeiros Varzielas, Tri-bi-maximal mixing in viable family symmetry unified model with extended seesaw, Phys. Rev. D 79 (2009) 093001 [arXiv:0902.3250] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S.F. King and C. Luhn, A new family symmetry for SO(10) GUTs, Nucl. Phys. B 820 (2009) 269 [arXiv:0905.1686] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  26. [26]
    S.F. King and C. Luhn, A Supersymmetric grand unified theory of flavour with PSL(2)(7) × SO(10), Nucl. Phys. B 832 (2010) 414 [arXiv:0912.1344] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  27. [27]
    I. de Medeiros Varzielas and G.G. Ross, Discrete family symmetry, Higgs mediators and θ 13, JHEP 12 (2012) 041 [arXiv:1203.6636] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    A. Anandakrishnan, S. Raby and A. Wingerter, Yukawa unification predictions for the LHC, Phys. Rev. D 87 (2013) 055005 [arXiv:1212.0542] [INSPIRE].ADSGoogle Scholar
  29. [29]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete Δ(27) × SO(10) SUSY GUT, Phys. Rev. D 94 (2016) 016006 [arXiv:1512.00850] [INSPIRE].ADSGoogle Scholar
  30. [30]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete A 4× SU(5) SUSY GUT, JHEP 06 (2015) 141 [arXiv:1503.03306] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Tri-bimaximal neutrino mixing from discrete subgroups of SU(3) and SO(3) family symmetry, Phys. Lett. B 644 (2007) 153 [hep-ph/0512313] [INSPIRE].
  32. [32]
    S.F. King and M. Malinsky, Towards a complete theory of fermion masses and mixings with SO(3) family symmetry and 5 − D SO(10) unification, JHEP 11 (2006) 071 [hep-ph/0608021] [INSPIRE].
  33. [33]
    G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) grand unified model of tri-bimaximal mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [INSPIRE].
  34. [34]
    P. Ciafaloni, M. Picariello, E. Torrente-Lujan and A. Urbano, Neutrino masses and tribimaximal mixing in minimal renormalizable SUSY SU(5) grand unified model with A 4 flavor symmetry, Phys. Rev. D 79 (2009) 116010 [arXiv:0901.2236] [INSPIRE].
  35. [35]
    T.J. Burrows and S.F. King, A 4 family symmetry from SU(5) SUSY GUTs in 6d, Nucl. Phys. B 835 (2010) 174 [arXiv:0909.1433] [INSPIRE].CrossRefzbMATHGoogle Scholar
  36. [36]
    I.K. Cooper, S.F. King and C. Luhn, SUSY SU(5) with singlet plus adjoint matter and A 4 family symmetry, Phys. Lett. B 690 (2010) 396 [arXiv:1004.3243] [INSPIRE].
  37. [37]
    I.K. Cooper, S.F. King and C. Luhn, A4xSU(5) SUSY GUT of flavour with trimaximal neutrino mixing, JHEP 06 (2012) 130 [arXiv:1203.1324] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    S. Antusch, S.F. King and M. Spinrath, Measurable neutrino mass scale in A 4 × SU(5), Phys. Rev. D 83 (2011) 013005 [arXiv:1005.0708] [INSPIRE].
  39. [39]
    S. Antusch, S.F. King, C. Luhn and M. Spinrath, Right unitarity triangles and tri-bimaximal mixing from discrete symmetries and unification, Nucl. Phys. B 850 (2011) 477 [arXiv:1103.5930] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  40. [40]
    D. Meloni, Bimaximal mixing and large θ 13 in a SUSY SU(5) model based on S 4, JHEP 10 (2011) 010 [arXiv:1107.0221] [INSPIRE].
  41. [41]
    T.J. Burrows and S.F. King, A 4 × SU(5) SUSY GUT of flavour in 8D, Nucl. Phys. B 842 (2011) 107 [arXiv:1007.2310] [INSPIRE].
  42. [42]
    C. Hagedorn, S.F. King and C. Luhn, SUSY S 4 × SU(5) revisited, Phys. Lett. B 717 (2012) 207 [arXiv:1205.3114] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    J. Gehrlein, J.P. Oppermann, D. Schäfer and M. Spinrath, An SU(5) × A 5 golden ratio flavour model, Nucl. Phys. B 890 (2014) 539 [arXiv:1410.2057] [INSPIRE].zbMATHGoogle Scholar
  44. [44]
    B.D. Callen and R.R. Volkas, Large lepton mixing angles from a 4 + 1-dimensional SU(5) × A 4 domain-wall braneworld model, Phys. Rev. D 86 (2012) 056007 [arXiv:1205.3617] [INSPIRE].Google Scholar
  45. [45]
    A. Meroni, S.T. Petcov and M. Spinrath, A SUSY SU(5) × Tunified model of flavour with large θ 13, Phys. Rev. D 86 (2012) 113003 [arXiv:1205.5241] [INSPIRE].Google Scholar
  46. [46]
    M.-C. Chen, J. Huang, K.T. Mahanthappa and A.M. Wijangco, Large θ 13 in a SUSY SU(5) × Tmodel, JHEP 10 (2013) 112 [arXiv:1307.7711] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    S.F. King, C. Luhn and A.J. Stuart, A grand Δ(96) × SU(5) flavour model, Nucl. Phys. B 867 (2013) 203 [arXiv:1207.5741] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  48. [48]
    S. Antusch, C. Gross, V. Maurer and C. Sluka, A flavour GUT model with \( {\theta}_{13}^{P\;M\;N\;S}\simeq {\theta}_C/\sqrt{2} \), Nucl. Phys. B 877 (2013) 772 [arXiv:1305.6612] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  49. [49]
    S. Antusch, C. Gross, V. Maurer and C. Sluka, Inverse neutrino mass hierarchy in a flavour GUT model, Nucl. Phys. B 879 (2014) 19 [arXiv:1306.3984] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  50. [50]
    S. Antusch, I. de Medeiros Varzielas, V. Maurer, C. Sluka and M. Spinrath, Towards predictive flavour models in SUSY SU(5) GUTs with doublet-triplet splitting, JHEP 09 (2014) 141 [arXiv:1405.6962] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    S.F. King, A model of quark and lepton mixing, JHEP 01 (2014) 119 [arXiv:1311.3295] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    S.F. King, A to Z of Flavour with Pati-Salam, JHEP 08 (2014) 130 [arXiv:1406.7005] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    R. de Adelhart Toorop, F. Bazzocchi and L. Merlo, The interplay between GUT and flavour symmetries in a Pati-Salam ×S 4 model, JHEP 08 (2010) 001 [arXiv:1003.4502] [INSPIRE].CrossRefzbMATHGoogle Scholar
  54. [54]
    T. Feldmann, F. Hartmann, W. Kilian and C. Luhn, Combining Pati-Salam and flavour symmetries, JHEP 10 (2015) 160 [arXiv:1506.00782] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    I. de Medeiros Varzielas, Non-Abelian family symmetries in Pati-Salam unification, JHEP 01 (2012) 097 [arXiv:1111.3952] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    I. de Medeiros Varzielas, G.G. Ross and J. Talbert, A unified model of quarks and leptons with a universal texture zero, arXiv:1710.01741 [INSPIRE].
  57. [57]
    I.P. Ivanov and L. Lavoura, SO(10) models with flavour symmetries: classification and examples, J. Phys. G 43 (2016) 105005 [arXiv:1511.02720] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    P.M. Ferreira, W. Grimus, D. Jurčiukonis and L. Lavoura, Flavour symmetries in a renormalizable SO(10) model, Nucl. Phys. B 906 (2016) 289 [arXiv:1510.02641] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  59. [59]
    D. Meloni, GUT and flavor models for neutrino masses and mixing, Front. in Phys. 5 (2017) 43 [arXiv:1709.02662] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    D.-G. Lee and R.N. Mohapatra, An SO(10) × S 4 scenario for naturally degenerate neutrinos, Phys. Lett. B 329 (1994) 463 [hep-ph/9403201] [INSPIRE].
  61. [61]
    C. Hagedorn, M. Lindner and R.N. Mohapatra, S 4 flavor symmetry and fermion masses: towards a grand unified theory of flavor, JHEP 06 (2006) 042 [hep-ph/0602244] [INSPIRE].
  62. [62]
    Y. Cai and H.-B. Yu, A SO(10) GUT model with S 4 flavor symmetry, Phys. Rev. D 74 (2006) 115005 [hep-ph/0608022] [INSPIRE].
  63. [63]
    B. Dutta, Y. Mimura and R.N. Mohapatra, An SO(10) grand unified theory of flavor, JHEP 05 (2010) 034 [arXiv:0911.2242] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  64. [64]
    P.S. Bhupal Dev, R.N. Mohapatra and M. Severson, Neutrino mixings in SO(10) with Type II seesaw and θ 13, Phys. Rev. D 84 (2011) 053005 [arXiv:1107.2378] [INSPIRE].Google Scholar
  65. [65]
    K.M. Patel, An SO(10) × S 4 model of quark-lepton complementarity, Phys. Lett. B 695 (2011) 225 [arXiv:1008.5061] [INSPIRE].CrossRefGoogle Scholar
  66. [66]
    P.S. Bhupal Dev, B. Dutta, R.N. Mohapatra and M. Severson, θ 13 and proton decay in a minimal SO(10) × S 4 model of flavor, Phys. Rev. D 86 (2012) 035002 [arXiv:1202.4012] [INSPIRE].Google Scholar
  67. [67]
    F. Björkeroth, F.J. de Anda, S.F. King and E. Perdomo, A natural S 4 × SO(10) model of flavour, JHEP 10 (2017) 148 [arXiv:1705.01555] [INSPIRE].CrossRefGoogle Scholar
  68. [68]
    S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [INSPIRE].
  69. [69]
    S.F. King, Minimal predictive see-saw model with normal neutrino mass hierarchy, JHEP 07 (2013) 137 [arXiv:1304.6264] [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    F. Björkeroth and S.F. King, Testing constrained sequential dominance models of neutrinos, J. Phys. G 42 (2015) 125002 [arXiv:1412.6996] [INSPIRE].CrossRefADSGoogle Scholar
  71. [71]
    S.F. King, Littlest seesaw, JHEP 02 (2016) 085 [arXiv:1512.07531] [INSPIRE].CrossRefADSGoogle Scholar
  72. [72]
    S.F. King and C. Luhn, Littlest Seesaw model from S 4 × U(1), JHEP 09 (2016) 023 [arXiv:1607.05276] [INSPIRE].Google Scholar
  73. [73]
    T. Geib and S.F. King, A comprehensive renormalisation group analysis of the littlest seesaw model, arXiv:1709.07425 [INSPIRE].
  74. [74]
    H.M. Lee et al., A unique4R symmetry for the MSSM, Phys. Lett. B 694 (2011) 491 [arXiv:1009.0905] [INSPIRE].CrossRefGoogle Scholar
  75. [75]
    S. Antusch, S.F. King, C. Luhn and M. Spinrath, Trimaximal mixing with predicted θ 13 from a new type of constrained sequential dominance, Nucl. Phys. B 856 (2012) 328 [arXiv:1108.4278] [INSPIRE].CrossRefzbMATHGoogle Scholar
  76. [76]
    S. Antusch, S.F. King and M. Spinrath, Spontaneous CP-violation in A 4 × SU(5) with constrained sequential dominance 2, Phys. Rev. D 87 (2013) 096018 [arXiv:1301.6764] [INSPIRE].Google Scholar
  77. [77]
    P. Di Bari, Seesaw geometry and leptogenesis, Nucl. Phys. B 727 (2005) 318 [hep-ph/0502082] [INSPIRE].
  78. [78]
    E. Bertuzzo, P. Di Bari and L. Marzola, The problem of the initial conditions in flavoured leptogenesis and the tauon N 2 -dominated scenario, Nucl. Phys. B 849 (2011) 521 [arXiv:1007.1641] [INSPIRE].CrossRefzbMATHGoogle Scholar
  79. [79]
    S. Antusch, P. Di Bari, D.A. Jones and S.F. King, A fuller flavour treatment of N 2 -dominated leptogenesis, Nucl. Phys. B 856 (2012) 180 [arXiv:1003.5132] [INSPIRE].CrossRefzbMATHGoogle Scholar
  80. [80]
    P. Di Bari, L. Marzola and M. Re Fiorentin, Decrypting SO(10)-inspired leptogenesis, Nucl. Phys. B 893 (2015) 122 [arXiv:1411.5478] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  81. [81]
    P. Di Bari and S.F. King, Successful N 2 leptogenesis with flavour coupling effects in realistic unified models, JCAP 10 (2015) 008 [arXiv:1507.06431] [INSPIRE].CrossRefGoogle Scholar
  82. [82]
    P. Di Bari and M. Re Fiorentin, A full analytic solution of SO(10)-inspired leptogenesis, JHEP 10 (2017) 029 [arXiv:1705.01935] [INSPIRE].CrossRefGoogle Scholar
  83. [83]
    P. Di Bari and M. Re Fiorentin, Supersymmetric SO(10)-inspired leptogenesis and a new N 2 -dominated scenario, JCAP 03 (2016) 039 [arXiv:1512.06739] [INSPIRE].CrossRefGoogle Scholar
  84. [84]
    R. Gatto, G. Sartori and M. Tonin, Weak selfmasses, cabibbo angle, and broken SU(2) × SU(2), Phys. Lett. B 28 (1968) 128.CrossRefADSGoogle Scholar
  85. [85]
    F. Wilczek and S. Dimopoulos, Incomplete multiplets in supersymmetric unified models, NSF-ITP-82-07 (1981).
  86. [86]
    K.S. Babu and S.M. Barr, Natural suppression of Higgsino mediated proton decay in supersymmetric SO(10), Phys. Rev. D 48 (1993) 5354 [hep-ph/9306242] [INSPIRE].
  87. [87]
    S.M. Barr and S. Raby, Minimal SO(10) unification, Phys. Rev. Lett. 79 (1997) 4748 [hep-ph/9705366] [INSPIRE].
  88. [88]
    H. Murayama and D.B. Kaplan, Family symmetries and proton decay, Phys. Lett. B 336 (1994) 221 [hep-ph/9406423] [INSPIRE].
  89. [89]
    P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [INSPIRE].
  90. [90]
    A. Bueno et al., Nucleon decay searches with large liquid argon TPC detectors at shallow depths: Atmospheric neutrinos and cosmogenic backgrounds, JHEP 04 (2007) 041 [hep-ph/0701101] [INSPIRE].
  91. [91]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  92. [92]
    KamLAND-Zen collaboration, A. Gando et al., Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [arXiv:1605.02889] [INSPIRE].
  93. [93]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].CrossRefADSGoogle Scholar
  94. [94]
    S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].CrossRefADSGoogle Scholar
  95. [95]
    S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [INSPIRE].
  96. [96]
    T2K collaboration, K. Abe et al., Combined analysis of neutrino and antineutrino oscillations at T2K, Phys. Rev. Lett. 118 (2017) 151801 [arXiv:1701.00432] [INSPIRE].
  97. [97]
    NOvA collaboration, P. Adamson et al., Measurement of the neutrino mixing angle θ 23 in NOvA, Phys. Rev. Lett. 118 (2017) 151802 [arXiv:1701.05891] [INSPIRE].
  98. [98]
    L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].
  99. [99]
    S. Davidson, Parametrizations of the seesaw, or, can the seesaw be tested?, hep-ph/0409339 [INSPIRE].
  100. [100]
    P. Di Bari, An introduction to leptogenesis and neutrino properties, Contemp. Phys. 53 (2012) 315 [arXiv:1206.3168] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.
  2. 2.Tepatitlán’s Institute for Theoretical StudiesJaliscoMéxico

Personalised recommendations