Journal of High Energy Physics

, 2019:121 | Cite as

Linearly polarized gluons at next-to-next-to leading order and the Higgs transverse momentum distribution

  • Daniel Gutierrez-ReyesEmail author
  • Sergio Leal-Gomez
  • Ignazio Scimemi
  • Alexey Vladimirov
Open Access
Regular Article - Theoretical Physics


We calculate the small-b (or large-qT) matching of transverse momentum de- pendent (TMD) distribution for linearly polarized gluons to the integrated gluon distributions at the next-to-next-to-leading order (NNLO). This is the last missing part for the complete NNLO prediction of the Higgs spectrum within TMD factorization. We discuss the numerical impact of the correction so derived to the qT -differential cross-section for Higgs boson production and to the positivity bound for linearly polarized gluon transverse momentum distribution.


NLO Computations QCD Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Supplementary material

13130_2019_11837_MOESM1_ESM.tgz (36 kb)
ESM 1 (TGZ 35 kb)


  1. [1]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys.B 106 (1976) 292 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys.B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  3. [3]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept.457 (2008) 1 [hep-ph/0503172] [INSPIRE].
  4. [4]
    S. Catani, E. D’Emilio and L. Trentadue, The Gluon Form-factor to Higher Orders: Gluon Gluon Annihilation at Small Q transverse, Phys. Lett.B 211 (1988) 335 [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    J. Collins, Foundations of perturbative QCD, Cambridge University Press (2013) [INSPIRE].
  6. [6]
    M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization Theorem For Drell-Yan At Low q TAnd Transverse Momentum Distributions On-The-Light-Cone, JHEP07 (2012) 002 [arXiv:1111.4996] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    M.G. Echevarria, A. Idilbi and I. Scimemi, Unified treatment of the QCD evolution of all (un-)polarized transverse momentum dependent functions: Collins function as a study case, Phys. Rev.D 90 (2014) 014003 [arXiv:1402.0869] [INSPIRE].
  8. [8]
    A. Vladimirov, Structure of rapidity divergences in multi-parton scattering soft factors, JHEP04 (2018) 045 [arXiv:1707.07606] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    M.G. Echevarria, T. Kasemets, P.J. Mulders and C. Pisano, QCD evolution of (un) polarized gluon TMDPDFs and the Higgs q T-distribution, JHEP07 (2015) 158 [Erratum ibid.05 (2017) 073] [arXiv:1502.05354] [INSPIRE].
  10. [10]
    S. Catani and M. Grazzini, QCD transverse-momentum resummation in gluon fusion processes, Nucl. Phys.B 845 (2011) 297 [arXiv:1011.3918] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    D. Boer, W.J. den Dunnen, C. Pisano, M. Schlegel and W. Vogelsang, Linearly Polarized Gluons and the Higgs Transverse Momentum Distribution, Phys. Rev. Lett.108 (2012) [arXiv:1109.1444] [INSPIRE].
  12. [12]
    T. Becher, M. Neubert and D. Wilhelm, Higgs-Boson Production at Small Transverse Momentum, JHEP05 (2013) 110 [arXiv:1212.2621] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    P.J. Mulders and J. Rodrigues, Transverse momentum dependence in gluon distribution and fragmentation functions, Phys. Rev.D 63 (2001) 094021 [hep-ph/0009343] [INSPIRE].
  14. [14]
    T. Becher and M. Neubert, Drell-Yan Production at Small q T, Transverse Parton Distributions and the Collinear Anomaly, Eur. Phys. J.C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].
  15. [15]
    T. Gehrmann, T. Luebbert and L.L. Yang, Calculation of the transverse parton distribution functions at next-to-next-to-leading order, JHEP06 (2014) 155 [arXiv:1403.6451] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    M.G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized Transverse Momentum Dependent Parton Distribution and Fragmentation Functions at next-to-next-to-leading order, JHEP09 (2016) 004 [arXiv:1604.07869] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    D. Gutiérrez-Reyes, I. Scimemi and A.A. Vladimirov, Twist-2 matching of transverse momentum dependent distributions, Phys. Lett.B 769 (2017) 84 [arXiv:1702.06558] [INSPIRE].
  18. [18]
    M.-X. Luo, X. Wang, X. Xu, L.L. Yang, T.-Z. Yang and H.X. Zhu, Transverse Parton Distribution and Fragmentation Functions at NNLO: the Quark Case, JHEP10 (2019) 083 [arXiv:1908.03831] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    I. Scimemi and A. Vladimirov, Systematic analysis of double-scale evolution, JHEP08 (2018) 003 [arXiv:1803.11089] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    J. Cruz-Martinez, T. Gehrmann, E.W.N. Glover and A. Huss, Second-order QCD effects in Higgs boson production through vector boson fusion, Phys. Lett.B 781 (2018) 672 [arXiv:1802.02445] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    I. Scimemi and A. Vladimirov, Analysis of vector boson production within TMD factorization, Eur. Phys. J.C 78 (2018) 89 [arXiv:1706.01473] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    V. Bertone, I. Scimemi and A. Vladimirov, Extraction of unpolarized quark transverse momentum dependent parton distributions from Drell-Yan/Z-boson production, JHEP06 (2019) 028 [arXiv:1902.08474] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  23. [23]
    X. Chen et al., Precise QCD Description of the Higgs Boson Transverse Momentum Spectrum, Phys. Lett.B 788 (2019) 425 [arXiv:1805.00736] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    M.G. Echevarria, I. Scimemi and A. Vladimirov, Transverse momentum dependent fragmentation function at next-to-next-to-leading order, Phys. Rev.D 93 (2016) 011502 [Erratum ibid.D 94 (2016) 099904] [arXiv:1509.06392] [INSPIRE].
  25. [25]
    M.G. Echevarria, I. Scimemi and A. Vladimirov, Universal transverse momentum dependent soft function at NNLO, Phys. Rev.D 93 (2016) 054004 [arXiv:1511.05590] [INSPIRE].
  26. [26]
    D. Gutierrez-Reyes, I. Scimemi and A. Vladimirov, Transverse momentum dependent transversely polarized distributions at next-to-next-to-leading-order, JHEP07 (2018) 172 [arXiv:1805.07243] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  27. [27]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys.B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].
  28. [28]
    S. Mantry and F. Petriello, Factorization and Resummation of Higgs Boson Differential Distributions in Soft-Collinear Effective Theory, Phys. Rev.D 81 (2010) 093007 [arXiv:0911.4135] [INSPIRE].
  29. [29]
    D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP11 (2011) 064 [arXiv:1109.2109] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    W. Bizoń et al., Fiducial distributions in Higgs and Drell-Yan production at N 3LL+NNLO, JHEP12 (2018) 132 [arXiv:1805.05916] [INSPIRE].
  31. [31]
    D. Boer, S.J. Brodsky, P.J. Mulders and C. Pisano, Direct Probes of Linearly Polarized Gluons inside Unpolarized Hadrons, Phys. Rev. Lett.106 (2011) 132001 [arXiv:1011.4225] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    A. Metz and J. Zhou, Distribution of linearly polarized gluons inside a large nucleus, Phys. Rev.D 84 (2011) 051503 [arXiv:1105.1991] [INSPIRE].
  33. [33]
    F. Dominguez, J.-W. Qiu, B.-W. Xiao and F. Yuan, On the linearly polarized gluon distributions in the color dipole model, Phys. Rev.D 85 (2012) 045003 [arXiv:1109.6293] [INSPIRE].
  34. [34]
    C. Pisano, D. Boer, S.J. Brodsky, M.G.A. Buffing and P.J. Mulders, Linear polarization of gluons and photons in unpolarized collider experiments, JHEP10 (2013) 024 [arXiv:1307.3417] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    A. Dumitru, T. Lappi and V. Skokov, Distribution of Linearly Polarized Gluons and Elliptic Azimuthal Anisotropy in Deep Inelastic Scattering Dijet Production at High Energy, Phys. Rev. Lett.115 (2015) 252301 [arXiv:1508.04438] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    A. Mukherjee and S. Rajesh, Linearly polarized gluons in charmonium and bottomonium production in color octet model, Phys. Rev.D 95 (2017) 034039 [arXiv:1611.05974] [INSPIRE].
  37. [37]
    D. Boer, P.J. Mulders, J. Zhou and Y.-j. Zhou, Suppression of maximal linear gluon polarization in angular asymmetries, JHEP10 (2017) 196 [arXiv:1702.08195] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    A.V. Efremov, N.Y. Ivanov and O.V. Teryaev, How to measure the linear polarization of gluons in unpolarized proton using the heavy-quark pair leptoproduction, Phys. Lett.B 777 (2018) 435 [arXiv:1711.05221] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    A.V. Efremov, N.Y. Ivanov and O.V. Teryaev, The ratio R = dσ L/dσ Tin heavy-quark pair leptoproduction as a probe of linearly polarized gluons in unpolarized proton, Phys. Lett.B 780 (2018) 303 [arXiv:1801.03398] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    R. Kishore and A. Mukherjee, Accessing linearly polarized gluon distribution in J/𝜓 production at the electron-ion collider, Phys. Rev.D 99 (2019) 054012 [arXiv:1811.07495] [INSPIRE].
  41. [41]
    M.G. Echevarria, Proper TMD factorization for quarkonia production: pp → η c,bas a study case, JHEP10 (2019) 144 [arXiv:1907.06494] [INSPIRE].
  42. [42]
    C. Marquet, C. Roiesnel and P. Taels, Linearly polarized small-x gluons in forward heavy-quark pair production, Phys. Rev.D 97 (2018) 014004 [arXiv:1710.05698] [INSPIRE].
  43. [43]
    L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev.D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].
  44. [44]
  45. [45]
  46. [46]
    I. Scimemi, A. Tarasov and A. Vladimirov, Collinear matching for Sivers function at next-to-leading order, JHEP05 (2019) 125 [arXiv:1901.04519] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  47. [47]
    T. Gehrmann, T. Lubbert and L.L. Yang, Transverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark case, Phys. Rev. Lett.109 (2012) 242003 [arXiv:1209.0682] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    M.G. Echevarría, A. Idilbi and I. Scimemi, Soft and Collinear Factorization and Transverse Momentum Dependent Parton Distribution Functions, Phys. Lett.B 726 (2013) 795 [arXiv:1211.1947] [INSPIRE].
  49. [49]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The Quark form-factor at higher orders, JHEP08 (2005) 049 [hep-ph/0507039] [INSPIRE].
  50. [50]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP06 (2010) 094 [arXiv:1004.3653] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    A.A. Vladimirov, Correspondence between Soft and Rapidity Anomalous Dimensions, Phys. Rev. Lett.118 (2017) 062001 [arXiv:1610.05791] [INSPIRE].
  52. [52]
    Y. Li and H.X. Zhu, Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation, Phys. Rev. Lett.118 (2017) 022004 [arXiv:1604.01404] [INSPIRE].
  53. [53]
    J.C. Collins and D.E. Soper, Back-To-Back Jets: Fourier Transform from B to K-Transverse, Nucl. Phys.B 197 (1982) 446 [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    I. Scimemi and A. Vladimirov, Power corrections and renormalons in Transverse Momentum Distributions, JHEP03 (2017) 002 [arXiv:1609.06047] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  55. [55]
    M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Transverse Parton Distribution and Fragmentation Functions at NNLO: the Gluon Case, arXiv:1909.13820 [INSPIRE].
  56. [56]
    Y. Li, D. Neill and H.X. Zhu, An Exponential Regulator for Rapidity Divergences, arXiv:1604.00392 [INSPIRE].
  57. [57]
    M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys.30 (1979) 711 [INSPIRE].Google Scholar
  58. [58]
    M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys.B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].
  59. [59]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order \( {\alpha}_s^4 \), Phys. Rev. Lett.79 (1997) 353 [hep-ph/9705240] [INSPIRE].
  60. [60]
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs Bosons from Two Gluon Annihilation in Proton Proton Collisions, Phys. Rev. Lett.40 (1978) 692 [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-Group Improved Prediction for Higgs Production at Hadron Colliders, Eur. Phys. J.B 62 (2009) 333 [arXiv:0809.4283] [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys.B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].
  63. [63]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys.B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].
  64. [64]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the Large Perturbative Corrections to Higgs Production at Hadron Colliders, Phys. Rev.D 79 (2009) 033013 [arXiv:0808.3008] [INSPIRE].
  65. [65]
    NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J.C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
  66. [66]
    A. Vladimirov, Pion-induced Drell-Yan processes within TMD factorization, JHEP10 (2019) 090 [arXiv:1907.10356] [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  68. [68]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun.178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  69. [69]
    CMS collaboration, Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J.C 76 (2016) 13 [arXiv:1508.07819] [INSPIRE].
  70. [70]
    V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts Mod. Phys.211 (2004) 1.MathSciNetzbMATHGoogle Scholar
  71. [71]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys.B 126 (1977) 298 [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Daniel Gutierrez-Reyes
    • 1
    Email author
  • Sergio Leal-Gomez
    • 1
    • 2
  • Ignazio Scimemi
    • 1
  • Alexey Vladimirov
    • 3
  1. 1.Departamento de Física Teórica and IPARCOSUniversidad Complutense de Madrid (UCM)MadridSpain
  2. 2.Faculty of PhysicsUniversity of ViennaWienAustria
  3. 3.Institut für Theoretische PhysikUniversität RegensburgRegensburgGermany

Personalised recommendations