Advertisement

Journal of High Energy Physics

, 2019:105 | Cite as

One-loop determinants for black holes in 4d gauged supergravity

  • Kiril HristovEmail author
  • Ivano Lodato
  • Valentin Reys
Open Access
Regular Article - Theoretical Physics
  • 93 Downloads

Abstract

We continue the effort of defining and evaluating the quantum entropy function for supersymmetric black holes in 4d \( \mathcal{N} \) = 2 gauged supergravity, initiated in [1]. The emphasis here is on the missing steps in the previous localization analysis, mainly dealing with one-loop determinants for abelian vector multiplets and hypermultiplets on the non-compact space 2× Σg with particular boundary conditions. We use several different techniques to arrive at consistent results, which have a most direct bearing on the logarithmic correction terms to the Bekenstein-Hawking entropy of said black holes.

Keywords

Black Holes in String Theory Supergravity Models AdS-CFT Correspondence Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    K. Hristov, I. Lodato and V. Reys, On the quantum entropy function in 4d gauged supergravity, JHEP07 (2018) 072 [arXiv:1803.05920] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS 4from supersymmetric localization, JHEP05 (2016) 054 [arXiv:1511.04085] [INSPIRE].Google Scholar
  3. [3]
    A. Zaffaroni, Lectures on AdS Black Holes, Holography and Localization, arXiv:1902.07176 [INSPIRE].
  4. [4]
    A. Dabholkar, J. Gomes and S. Murthy, Quantum black holes, localization and the topological string, JHEP06 (2011) 019 [arXiv:1012.0265] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Dabholkar, J. Gomes and S. Murthy, Localization & Exact Holography, JHEP04 (2013) 062 [arXiv:1111.1161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71 [arXiv:0712.2824] [INSPIRE].
  7. [7]
    V. Pestun et al., Localization techniques in quantum field theories, J. Phys.A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].
  8. [8]
    A. Sen, Quantum Entropy Function from AdS 2/C F T 1Correspondence, Int. J. Mod. Phys.A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].
  9. [9]
    S. Murthy and V. Reys, Functional determinants, index theorems and exact quantum black hole entropy, JHEP12 (2015) 028 [arXiv:1504.01400] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    R.K. Gupta, Y. Ito and I. Jeon, Supersymmetric Localization for BPS Black Hole Entropy: 1-loop Partition Function from Vector Multiplets, JHEP11 (2015) 197 [arXiv:1504.01700] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J.R. David, E. Gava, R.K. Gupta and K. Narain, Localization on AdS 2× S 1 , JHEP03 (2017) 050 [arXiv:1609.07443] [INSPIRE].Google Scholar
  12. [12]
    B. Assel, D. Martelli, S. Murthy and D. Yokoyama, Localization of supersymmetric field theories on non-compact hyperbolic three-manifolds, JHEP03 (2017) 095 [arXiv:1609.08071] [INSPIRE].
  13. [13]
    A. Cabo-Bizet, V.I. Giraldo-Rivera and L.A. Pando Zayas, Microstate counting of AdS 4hyperbolic black hole entropy via the topologically twisted index, JHEP08 (2017) 023 [arXiv:1701.07893] [INSPIRE].
  14. [14]
    J.R. David, E. Gava, R.K. Gupta and K. Narain, Boundary conditions and localization on AdS. Part I, JHEP09 (2018) 063 [arXiv:1802.00427] [INSPIRE].
  15. [15]
    J.R. David, E. Gava, R.K. Gupta and K. Narain, Boundary conditions and localization on AdS: Part 2 General analysis, arXiv:1906.02722 [INSPIRE].
  16. [16]
    A. Pittelli, A Refined \( \mathcal{N} \) = 2 Chiral Multiplet on Twisted AdS 2× S 1 , arXiv:1812.11151 [INSPIRE].
  17. [17]
    J.T. Liu, L.A. Pando Zayas, V. Rathee and W. Zhao, Toward Microstate Counting Beyond Large N in Localization and the Dual One-loop Quantum Supergravity, JHEP01 (2018) 026 [arXiv:1707.04197] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    I. Jeon and S. Lal, Logarithmic Corrections to Entropy of Magnetically Charged AdS4 Black Holes, Phys. Lett.B 774 (2017) 41 [arXiv:1707.04208] [INSPIRE].
  19. [19]
    J.T. Liu, L.A. Pando Zayas, V. Rathee and W. Zhao, One-Loop Test of Quantum Black Holes in anti-de Sitter Space, Phys. Rev. Lett.120 (2018) 221602 [arXiv:1711.01076] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Banerjee, R.K. Gupta and A. Sen, Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function, JHEP03 (2011) 147 [arXiv:1005.3044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    S. Banerjee, R.K. Gupta, I. Mandal and A. Sen, Logarithmic Corrections to N = 4 and N = 8 Black Hole Entropy: A One Loop Test of Quantum Gravity, JHEP11 (2011) 143 [arXiv:1106.0080] [INSPIRE].
  22. [22]
    A. Sen, Logarithmic Corrections to N = 2 Black Hole Entropy: An Infrared Window into the Microstates, Gen. Rel. Grav.44 (2012) 1207 [arXiv:1108.3842] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    S. Bhattacharyya, A. Grassi, M. Mariño and A. Sen, A One-Loop Test of Quantum Supergravity, Class. Quant. Grav.31 (2014) 015012 [arXiv:1210.6057] [INSPIRE].
  24. [24]
    J.T. Liu, L.A. Pando Zayas and S. Zhou, Subleading Microstate Counting in the Dual to Massive Type IIA, arXiv:1808.10445 [INSPIRE].
  25. [25]
    L.A. Pando Zayas and Y. Xin, The Topologically Twisted Index in the ’t Hooft Limit and the Dual AdS 4Black Hole Entropy, arXiv:1908.01194 [INSPIRE].
  26. [26]
    N. Banerjee, I. Mandal and A. Sen, Black Hole Hair Removal, JHEP07 (2009) 091 [arXiv:0901.0359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    D.P. Jatkar, A. Sen and Y.K. Srivastava, Black Hole Hair Removal: Non-linear Analysis, JHEP02 (2010) 038 [arXiv:0907.0593] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    F. Benini, K. Hristov and A. Zaffaroni, Exact microstate counting for dyonic black holes in AdS4, Phys. Lett.B 771 (2017) 462 [arXiv:1608.07294] [INSPIRE].
  29. [29]
    S.M. Hosseini, Black hole microstates and supersymmetric localization, arXiv:1803.01863 [INSPIRE].
  30. [30]
    B. de Wit and M. van Zalk, Electric and magnetic charges in N = 2 conformal supergravity theories, JHEP10 (2011) 050 [arXiv:1107.3305] [INSPIRE].
  31. [31]
    K. Hristov, S. Katmadas and I. Lodato, Higher derivative corrections to BPS black hole attractors in 4d gauged supergravity, JHEP05 (2016) 173 [arXiv:1603.00039] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    B. de Wit and V. Reys, Euclidean supergravity, JHEP12 (2017) 011 [arXiv:1706.04973] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    I. Jeon and S. Murthy, Twisting and localization in supergravity: equivariant cohomology of BPS black holes, JHEP03 (2019) 140 [arXiv:1806.04479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    M.F. Atiyah, Elliptic operators and compact groups, Lecture Notes in Mathematics, Volume 401, Springer Verlag, (1974).Google Scholar
  35. [35]
    P. Shanahan, The Atiyah-Singer Index Theorem: An Introduction, Springer, Berlin and Heidelberg, Germany, (1978).Google Scholar
  36. [36]
    M. Mariño, The geometry of supersymmetric gauge theories in four-dimensions, hep-th/9701128 [INSPIRE].
  37. [37]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP07 (2015) 127 [arXiv:1504.03698] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys.7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  39. [39]
    K. Hristov, S. Katmadas and C. Toldo, Rotating attractors and BPS black holes in AdS 4 , JHEP01 (2019) 199 [arXiv:1811.00292] [INSPIRE].Google Scholar
  40. [40]
    F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann surfaces, Proc. Symp. Pure Math.96 (2017) 13 [arXiv:1605.06120] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  41. [41]
    C. Closset and H. Kim, Comments on twisted indices in 3d supersymmetric gauge theories, JHEP08 (2016) 059 [arXiv:1605.06531] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    B. de Wit, J.W. van Holten and A. Van Proeyen, Structure of N = 2 Supergravity, Nucl. Phys.B 184 (1981) 77 [Erratum ibid.B 222 (1983) 516] [INSPIRE].
  43. [43]
    B. de Wit, B. Kleijn and S. Vandoren, Superconformal hypermultiplets, Nucl. Phys.B 568 (2000) 475 [hep-th/9909228] [INSPIRE].
  44. [44]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4black holes and attractors, JHEP01 (2010) 085 [arXiv:0911.4926] [INSPIRE].
  45. [45]
    G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Black hole partition functions and duality, JHEP03 (2006) 074 [hep-th/0601108] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  46. [46]
    G.L. Cardoso, B. de Wit and S. Mahapatra, Subleading and non-holomorphic corrections to N = 2 BPS black hole entropy, JHEP02 (2009) 006 [arXiv:0808.2627] [INSPIRE].
  47. [47]
    M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys.B 545 (1999) 434 [hep-th/9808097] [INSPIRE].
  48. [48]
    B. de Wit, S. Murthy and V. Reys, BRST quantization and equivariant cohomology: localization with asymptotic boundaries, JHEP09 (2018) 084 [arXiv:1806.03690] [INSPIRE].
  49. [49]
    P. Benetti Genolini, J.M. Pérez Ipiña and J. Sparks, Localization of the action in AdS/CFT, JHEP10 (2019) 252 [arXiv:1906.11249] [INSPIRE].
  50. [50]
    P.F. Hsieh and Y. Sibuya, Basic theory of ordinary differential equations, Springer Verlag, (1999).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Physics and Center for Field Theory and Particle PhysicsFudan UniversityShanghaiChina
  3. 3.Dipartimento di FisicaUniversità di Milano–BicoccaMilanoItaly
  4. 4.INFN, sezione di Milano–BicoccaMilanoItaly

Personalised recommendations