Advertisement

Journal of High Energy Physics

, 2019:76 | Cite as

The S-matrix bootstrap IV: multiple amplitudes

  • Alexandre HomrichEmail author
  • João Penedones
  • Jonathan Toledo
  • Balt C. van Rees
  • Pedro Vieira
Open Access
Regular Article - Theoretical Physics
  • 39 Downloads

Abstract

We explore the space of consistent three-particle couplings in ℤ2-symmetric two-dimensional QFTs using two first-principles approaches. Our first approach relies solely on unitarity, analyticity and crossing symmetry of the two-to-two scattering amplitudes and extends the techniques of [2] to a multi-amplitude setup. Our second approach is based on placing QFTs in AdS to get upper bounds on couplings with the numerical conformal bootstrap, and is a multi-correlator version of [1]. The space of allowed couplings that we carve out is rich in features, some of which we can link to amplitudes in integrable theories with a ℤ2 symmetry, e.g., the three-state Potts and tricritical Ising field theories. Along a specific line our maximal coupling agrees with that of a new exact S-matrix that corresponds to an elliptic deformation of the supersymmetric Sine-Gordon model which preserves unitarity and solves the Yang-Baxter equation.

Keywords

Field Theories in Lower Dimensions Integrable Field Theories Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap. Part I: QFT in AdS, JHEP11 (2017) 133 [arXiv:1607.06109] [INSPIRE].
  2. [2]
    M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap II: two dimensional amplitudes, JHEP11 (2017) 143 [arXiv:1607.06110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix Bootstrap III: Higher Dimensional Amplitudes, arXiv:1708.06765 [INSPIRE].
  4. [4]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    F. Caracciolo and V.S. Rychkov, Rigorous Limits on the Interaction Strength in Quantum Field Theory, Phys. Rev.D 81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].
  6. [6]
    S.R. Coleman and H.J. Thun, On the Prosaic Origin of the Double Poles in the sine-Gordon S Matrix, Commun. Math. Phys.61 (1978) 31 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    Y. He, A. Irrgang and M. Kruczenski, A note on the S-matrix bootstrap for the 2d O(N) bosonic model, JHEP11 (2018) 093 [arXiv:1805.02812] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    L. Córdova and P. Vieira, Adding flavour to the S-matrix bootstrap, JHEP12 (2018) 063 [arXiv:1805.11143] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    M.F. Paulos and Z. Zheng, Bounding scattering of charged particles in 1 + 1 dimensions, arXiv:1805.11429 [INSPIRE].
  10. [10]
    A.L. Guerrieri, J. Penedones and P. Vieira, Bootstrapping QCD Using Pion Scattering Amplitudes, Phys. Rev. Lett.122 (2019) 241604 [arXiv:1810.12849] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP06 (2014) 091 [arXiv:1307.6856] [INSPIRE].
  12. [12]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping Mixed Correlators in the 3D Ising Model, JHEP11 (2014) 109 [arXiv:1406.4858] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
  14. [14]
    D. Simmons-Duffin, A Semidefinite Program Solver for the Conformal Bootstrap, JHEP06 (2015) 174 [arXiv:1502.02033] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Creutz, Rigorous bounds on coupling constants in two-dimensional field theories, Phys. Rev.D 6 (1972) 2763 [INSPIRE].
  16. [16]
    K. Symanzik, The asymptotic condition and dispersion relations, in Lectures on field theory and the many-body problem, E.R. Caianiello eds., Academic Press, New York U.S.A. (1961), pg. 67.Google Scholar
  17. [17]
    L.D. Landau, On analytic properties of vertex parts in quantum field theory, Nucl. Phys.13 (1959) 181.MathSciNetCrossRefGoogle Scholar
  18. [18]
    R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys.1 (1960) 429 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    K. Sogo, M. Uchinami, Y. Akutsu and M. Wadati, Classification of exactly solvable two-component models, Prog. Theor. Phys.68 (1982) 508.ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    A.B. Zamolodchikov, Integrals of Motion in Scaling 3-State Potts Model Field Theory, Int. J. Mod. Phys.A 03 (1988) 743.Google Scholar
  21. [21]
    M. Caselle, G. Delfino, P. Grinza, O. Jahn and N. Magnoli, Potts correlators and the static three-quark potential, J. Stat. Mech.0603 (2006) P03008 [hep-th/0511168] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    C.-r. Ahn, Complete S matrices of supersymmetric sine-Gordon theory and perturbed superconformal minimal model, Nucl. Phys.B 354 (1991) 57 [INSPIRE].
  23. [23]
    C.-N. Yang and C.P. Yang, Thermodynamics of one-dimensional system of bosons with repulsive delta function interaction, J. Math. Phys.10 (1969) 1115 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Factorized s Matrices in Two-Dimensions as the Exact Solutions of Certain Relativistic Quantum Field Models, Annals Phys.120 (1979) 253 [INSPIRE].
  25. [25]
    L. Lepori, G.Z. Toth and G. Delfino, Particle spectrum of the 3-state Potts field theory: A Numerical study, J. Stat. Mech.0911 (2009) P11007 [arXiv:0909.2192] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    G. Mussardo, Statistical field theory: an introduction to exactly solved models in statistical physics, Oxford University Press, Oxford U.K. (2009).Google Scholar
  27. [27]
    C. Bercini, M. Fabri, A. Homrich and P. Vieira, SUSY S-matrix Bootstrap and Friends, arXiv:1909.06453 [INSPIRE].
  28. [28]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d+1) correspondence, Nucl. Phys.B 546 (1999) 96 [hep-th/9804058] [INSPIRE].
  29. [29]
    M. Hogervorst and S. Rychkov, Radial Coordinates for Conformal Blocks, Phys. Rev.D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].
  30. [30]
    M.F. Paulos and B. Zan, A functional approach to the numerical conformal bootstrap, arXiv:1904.03193 [INSPIRE].
  31. [31]
    D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part I: 1D CFTs and 2D S-matrices, JHEP02 (2019) 162 [arXiv:1803.10233] [INSPIRE].
  32. [32]
    D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part II. Natural bases for the crossing equation, JHEP02 (2019) 163 [arXiv:1811.10646] [INSPIRE].
  33. [33]
    M. Caselle, M. Hasenbusch, P. Provero and K. Zarembo, Bound states in the 3-d Ising model and implications for QCD at finite temperature and density, Nucl. Phys. Proc. Suppl.106 (2002) 504 [hep-lat/0110160].
  34. [34]
    V. Rosenhaus, Multipoint Conformal Blocks in the Comb Channel, JHEP02 (2019) 142 [arXiv:1810.03244] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations, Cambridge University Press, Cambridge U.K. (2005).Google Scholar
  36. [36]
    J.D. Bjorken and S. Drell, Relativistic Quantum Fields, McGraw-Hill College, New York U.S.A. (1965).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.ICTP South American Institute for Fundamental Research, IFT-UNESPSão PauloBrazil
  3. 3.Fields and Strings Laboratory, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  4. 4.Centre for Particle Theory, Department of Mathematical SciencesDurham UniversityDurhamU.K.

Personalised recommendations