Advertisement

Journal of High Energy Physics

, 2019:72 | Cite as

Exact results for 5d SCFTs of long quiver type

  • Christoph F. UhlemannEmail author
Open Access
Regular Article - Theoretical Physics
  • 10 Downloads

Abstract

Exact results are derived for 5d SCFTs with holographic duals in Type IIB supergravity. These theories have relevant deformations that flow to linear quiver gauge theories, with the number of nodes large in the large-N limits described by supergravity. Starting from a suitable formulation of the matrix models resulting from supersymmetric localization of the squashed S5 partition functions, the saddle point equations are solved for generic quivers with Nf = 2N at all interior nodes, which includes the TN theories, and for a sample of theories with Nf ≠ 2N nodes including theories with Chern-Simons terms. The resulting exact expressions for the free energies and conformal central charges are consistent with supergravity predictions and, where available, with previous numerical field theory analyses.

Keywords

AdS-CFT Correspondence Conformal Field Theory Field Theories in Higher Dimensions Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett.B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys.B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys.B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    B. Kol, 5D field theories and M-theory, JHEP11 (1999) 026 [hep-th/9705031] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Brandhuber, N. Itzhaki, J. Sonnenschein, S. Theisen and S. Yankielowicz, On the M-theory approach to (compactified) 5D field theories, Phys. Lett.B 415 (1997) 127 [hep-th/9709010] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards Classification of 5d SCFTs: Single Gauge Node, arXiv:1705.05836 [INSPIRE].
  8. [8]
    P. Jefferson, S. Katz, H.-C. Kim and C. Vafa, On Geometric Classification of 5d SCFTs, JHEP04 (2018) 103 [arXiv:1801.04036] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    D. Xie and S.-T. Yau, Three dimensional canonical singularity and five dimensional \( \mathcal{N} \)= 1 SCFT, JHEP06 (2017) 134 [arXiv:1704.00799] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    F. Apruzzi, L. Lin and C. Mayrhofer, Phases of 5d SCFTs from M-/F-theory on Non-Flat Fibrations, JHEP05 (2019) 187 [arXiv:1811.12400] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    C. Closset, M. Del Zotto and V. Saxena, Five-dimensional SCFTs and gauge theory phases: an M-theory/type IIA perspective, SciPost Phys.6 (2019) 052 [arXiv:1812.10451] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    F. Apruzzi, C. Lawrie, L. Lin, S. Schäfer-Nameki and Y.-N. Wang, Fibers add Flavor, Part I: Classification of 5d SCFTs, Flavor Symmetries and BPS States, arXiv:1907.05404 [INSPIRE].
  13. [13]
    A. Brandhuber and Y. Oz, The D4–D8 brane system and five-dimensional fixed points, Phys. Lett.B 460 (1999) 307 [hep-th/9905148] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    O. Bergman and D. Rodríguez-Gómez, 5d quivers and their AdS 6duals, JHEP07 (2012) 171 [arXiv:1206.3503] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  15. [15]
    D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, JHEP05 (2014) 032 [arXiv:1207.4359] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    O. Bergman and D. Rodríguez-Gómez, Probing the Higgs branch of 5d fixed point theories with dual giant gravitons in AdS 6, JHEP12 (2012) 047 [arXiv:1210.0589] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  17. [17]
    B. Assel, J. Estes and M. Yamazaki, Wilson Loops in 5d N = 1 SCFTs and AdS/CFT, Ann. Henri Poincaŕe15 (2014) 589 [arXiv:1212.1202] [INSPIRE].
  18. [18]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5d superconformal indices at large N and holography, JHEP08 (2013) 081 [arXiv:1305.6870] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    L.F. Alday, P. Benetti Genolini, M. Fluder, P. Richmond and J. Sparks, Supersymmetric gauge theories on five-manifolds, JHEP08 (2015) 007 [arXiv:1503.09090] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    M. Gutperle, J. Kaidi and H. Raj, Janus solutions in six-dimensional gauged supergravity, JHEP12 (2017) 018 [arXiv:1709.09204] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    M. Gutperle, J. Kaidi and H. Raj, Mass deformations of 5d SCFTs via holography, JHEP02 (2018) 165 [arXiv:1801.00730] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    I. Bah, A. Passias and P. Weck, Holographic duals of five-dimensional SCFTs on a Riemann surface, JHEP01 (2019) 058 [arXiv:1807.06031] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    G. Dibitetto and N. Petri, Surface defects in the D4–D8 brane system, JHEP01 (2019) 193 [arXiv:1807.07768] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    S.M. Hosseini, I. Yaakov and A. Zaffaroni, Topologically twisted indices in five dimensions and holography, JHEP11 (2018) 119 [arXiv:1808.06626] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    P.M. Crichigno, D. Jain and B. Willett, 5d Partition Functions with A Twist, JHEP11 (2018) 058 [arXiv:1808.06744] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    S.M. Hosseini, K. Hristov, A. Passias and A. Zaffaroni, 6D attractors and black hole microstates, arXiv:1809.10685 [INSPIRE].
  27. [27]
    S. Choi and S. Kim, Large AdS 6black holes from CFT 5, arXiv:1904.01164 [INSPIRE].
  28. [28]
    J.M. Penin, A.V. Ramallo and D. Rodríguez-Gómez, Supersymmetric probes in warped AdS 6, arXiv:1906.07732 [INSPIRE].
  29. [29]
    O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional E nfield theories, JHEP03 (1999) 006 [hep-th/9902179] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP12 (2015) 163 [arXiv:1507.03860] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 5-brane webs for 5d \( \mathcal{N} \)= 1 G2 gauge theories, JHEP03 (2018) 125 [arXiv:1801.03916] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  32. [32]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Dualities and 5-brane webs for 5d rank 2 SCFTs, JHEP12 (2018) 016 [arXiv:1806.10569] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Rank-3 antisymmetric matter on 5-brane webs, JHEP05 (2019) 133 [arXiv:1902.04754] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    E. D’Hoker, M. Gutperle, A. Karch and C.F. Uhlemann, Warped AdS 6× S 2in Type IIB supergravity I: Local solutions, JHEP08 (2016) 046 [arXiv:1606.01254] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  35. [35]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Holographic duals for five-dimensional superconformal quantum field theories, Phys. Rev. Lett.118 (2017) 101601 [arXiv:1611.09411] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Warped AdS 6× S 2in Type IIB supergravity II: Global solutions and five-brane webs, JHEP05 (2017) 131 [arXiv:1703.08186] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Warped AdS 6× S 2in Type IIB supergravity III: Global solutions with seven-branes, JHEP11 (2017) 200 [arXiv:1706.00433] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  38. [38]
    F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS 6solutions of type-II supergravity, JHEP11 (2014) 099 [Erratum JHEP05 (2015) 012] [arXiv:1406.0852] [INSPIRE].
  39. [39]
    H. Kim, N. Kim and M. Suh, Supersymmetric AdS 6Solutions of Type IIB Supergravity, Eur. Phys. J.C 75 (2015) 484 [arXiv:1506.05480] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    H. Kim and N. Kim, Comments on the symmetry of AdS 6solutions in string/M-theory and Killing spinor equations, Phys. Lett.B 760 (2016) 780 [arXiv:1604.07987] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    Y. Lozano, E. Ó Colgáin, D. Rodŕıguez-Gómez and K. Sfetsos, Supersymmetric AdS 6via T Duality, Phys. Rev. Lett.110 (2013) 231601 [arXiv:1212.1043] [INSPIRE].
  42. [42]
    Y. Lozano, E. Ó Colgáin and D. Rodríguez-Gómez, Hints of 5d Fixed Point Theories from Non-Abelian T-duality, JHEP05 (2014) 009 [arXiv:1311.4842] [INSPIRE].
  43. [43]
    M. Gutperle, C. Marasinou, A. Trivella and C.F. Uhlemann, Entanglement entropy vs. free energy in IIB supergravity duals for 5d SCFTs, JHEP09 (2017) 125 [arXiv:1705.01561] [INSPIRE].
  44. [44]
    J. Kaidi, (p, q)-strings probing five-brane webs, JHEP10 (2017) 087 [arXiv:1708.03404] [INSPIRE].
  45. [45]
    M. Gutperle, A. Trivella and C.F. Uhlemann, Type IIB 7-branes in warped AdS 6: partition functions, brane webs and probe limit, JHEP04 (2018) 135 [arXiv:1802.07274] [INSPIRE].
  46. [46]
    M. Gutperle, C.F. Uhlemann and O. Varela, Massive spin 2 excitations in AdS 6× S 2warped spacetimes, JHEP07 (2018) 091 [arXiv:1805.11914] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    O. Bergman, D. Rodríguez-Gómez and C.F. Uhlemann, Testing AdS 6/CFT 5in Type IIB with stringy operators, JHEP08 (2018) 127 [arXiv:1806.07898] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  48. [48]
    M. Fluder and C.F. Uhlemann, Precision Test of AdS 6/CFT 5in Type IIB String Theory, Phys. Rev. Lett.121 (2018) 171603 [arXiv:1806.08374] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J. Kaidi and C.F. Uhlemann, M-theory curves from warped AdS 6in Type IIB, JHEP11 (2018) 175 [arXiv:1809.10162] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  50. [50]
    J. Hong, J.T. Liu and D.R. Mayerson, Gauged Six-Dimensional Supergravity from Warped IIB Reductions, JHEP09 (2018) 140 [arXiv:1808.04301] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    E. Malek, H. Samtleben and V. Vall Camell, Supersymmetric AdS 7and AdS 6vacua and their minimal consistent truncations from exceptional field theory, Phys. Lett.B 786 (2018) 171 [arXiv:1808.05597] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  52. [52]
    Y. Lozano, N.T. Macpherson and J. Montero, AdS 6T-duals and type IIB AdS 6× S 2geometries with 7-branes, JHEP01 (2019) 116 [arXiv:1810.08093] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  53. [53]
    A. Chaney and C.F. Uhlemann, On minimal Type IIB AdS 6solutions with commuting 7-branes, JHEP12 (2018) 110 [arXiv:1810.10592] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  54. [54]
    E. Malek, H. Samtleben and V. Vall Camell, Supersymmetric AdS 7and AdS 6vacua and their consistent truncations with vector multiplets, JHEP04 (2019) 088 [arXiv:1901.11039] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  55. [55]
    K. Chen and M. Gutperle, Relating AdS 6solutions in type IIB supergravity, JHEP04 (2019) 054 [arXiv:1901.11126] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    M. Fluder, S.M. Hosseini and C.F. Uhlemann, Black hole microstate counting in Type IIB from 5d SCFTs, JHEP05 (2019) 134 [arXiv:1902.05074] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    J. Källén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere, JHEP08 (2012) 157 [arXiv:1206.6008] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, JHEP05 (2013) 144 [arXiv:1206.6339] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    G. Lockhart and C. Vafa, Superconformal Partition Functions and Non-perturbative Topological Strings, JHEP10 (2018) 051 [arXiv:1210.5909] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    Y. Imamura, Supersymmetric theories on squashed five-sphere, Prog. Theor. Exp. Phys.2013 (2013) 013B04 [arXiv:1209.0561] [INSPIRE].
  61. [61]
    Y. Imamura, Perturbative partition function for squashed S 5 , Prog. Theor. Exp. Phys.2013 (2013) 073B01 [arXiv:1210.6308] [INSPIRE].
  62. [62]
    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Spheres, Charges, Instantons and Bootstrap: A Five-Dimensional Odyssey, JHEP03 (2018) 123 [arXiv:1710.08418] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Romans Supergravity from Five-Dimensional Holograms, JHEP05 (2018) 039 [arXiv:1712.10313] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    N. Bobev, P. Bueno and Y. Vreys, Comments on Squashed-sphere Partition Functions, JHEP07 (2017) 093 [arXiv:1705.00292] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    D. Zagier, The Bloch-Wigner-Ramakrishnan polylogarithm function, Math. Ann.286 (1990) 613.MathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP09 (2009) 052 [arXiv:0906.0359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    O. Bergman and G. Zafrir, Lifting 4d dualities to 5d, JHEP04 (2015) 141 [arXiv:1410.2806] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    H. Hayashi, Y. Tachikawa and K. Yonekura, Mass-deformed T Nas a linear quiver, JHEP02 (2015) 089 [arXiv:1410.6868] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  69. [69]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    O. Chacaltana and J. Distler, Tinkertoys for Gaiotto Duality, JHEP11 (2010) 099 [arXiv:1008.5203] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    E. D’Hoker and M.B. Green, Exploring transcendentality in superstring amplitudes, JHEP07 (2019) 149 [arXiv:1906.01652] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    L.F. Alday, M. Fluder, P. Richmond and J. Sparks, Gravity Dual of Supersymmetric Gauge Theories on a Squashed Five-Sphere, Phys. Rev. Lett.113 (2014) 141601 [arXiv:1404.1925] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    L.F. Alday, M. Fluder, C.M. Gregory, P. Richmond and J. Sparks, Supersymmetric gauge theories on squashed five-spheres and their gravity duals, JHEP09 (2014) 067 [arXiv:1405.7194] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  74. [74]
    M. Suh, Supersymmetric AdS 6black holes from F (4) gauged supergravity, JHEP01 (2019) 035 [arXiv:1809.03517] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    M. Suh, Supersymmetric AdS 6black holes from matter coupled F (4) gauged supergravity, JHEP02 (2019) 108 [arXiv:1810.00675] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  76. [76]
    M. Suh, Uplifting supersymmetric AdS 6black holes to type-II supergravity, arXiv:1908.09846 [INSPIRE].
  77. [77]
    O. Aharony, L. Berdichevsky and M. Berkooz, 4d N = 2 superconformal linear quivers with type IIA duals, JHEP08 (2012) 131 [arXiv:1206.5916] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  78. [78]
    I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, seventh edition, D. Zwillinger and V. Moll eds., Academic Press (2007).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and AstronomyUniversity of CaliforniaLos AngelesU.S.A.

Personalised recommendations