Advertisement

Journal of High Energy Physics

, 2019:58 | Cite as

Entanglement content of quantum particle excitations. Part II. Disconnected regions and logarithmic negativity

  • Olalla A. Castro-AlvaredoEmail author
  • Cecilia De Fazio
  • Benjamin Doyon
  • István M. Szécsényi
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper we study the increment of the entanglement entropy and of the (replica) logarithmic negativity in a zero-density excited state of a free massive bosonic theory, compared to the ground state. This extends the work of two previous publications by the same authors. We consider the case of two disconnected regions and find that the change in the entanglement entropy depends only on the combined size of the regions and is independent of their connectivity. We subsequently generalize this result to any number of disconnected regions. For the replica negativity we find that its increment is a polynomial with integer coefficients depending only on the sizes of the two regions. The logarithmic negativity turns out to have a more complicated functional structure than its replica version, typically involving roots of polynomials on the sizes of the regions. We obtain our results by two methods already employed in previous work: from a qubit picture and by computing four-point functions of branch point twist fields in finite volume. We test our results against numerical simulations on a harmonic chain and find excellent agreement.

Keywords

Field Theories in Lower Dimensions Integrable Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys.80 (2008) 517 [quant-ph/0703044] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    P. Calabrese, J. Cardy and B. Doyon, Entanglement entropy in extended quantum systems, J. Phys.A 42 (2009) 500301.MathSciNetzbMATHGoogle Scholar
  3. [3]
    J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropy — a review, Rev. Mod. Phys.82 (2010) 277 [arXiv:0808.3773] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  4. [4]
    C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett.B 333 (1994) 55 [hep-th/9401072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys.B 424 (1994) 443 [hep-th/9403108] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    G. Vidal, J.I. Latorre, E. Rico and A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett.90 (2003) 227902 [quant-ph/0211074] [INSPIRE].
  7. [7]
    J.I. Latorre, E. Rico and G. Vidal, Ground state entanglement in quantum spin chains, Quant. Inf. Comput.4 (2004) 48 [quant-ph/0304098] [INSPIRE].
  8. [8]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.0406 (2004) P06002 [hep-th/0405152] [INSPIRE].zbMATHGoogle Scholar
  9. [9]
    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech.0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].
  10. [10]
    H. Casini, C.D. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac field in two dimensions, J. Stat. Mech.0507 (2005) P07007 [cond-mat/0505563] [INSPIRE].zbMATHCrossRefGoogle Scholar
  11. [11]
    H. Casini and M. Huerta, Entanglement and alpha entropies for a massive scalar field in two dimensions, J. Stat. Mech.0512 (2005) P12012 [cond-mat/0511014] [INSPIRE].zbMATHCrossRefGoogle Scholar
  12. [12]
    J.L. Cardy, O.A. Castro-Alvaredo and B. Doyon, Form factors of branch-point twist fields in quantum integrable models and entanglement entropy, J. Stat. Phys.130 (2008) 129 [arXiv:0706.3384] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    B. Doyon, Bi-partite entanglement entropy in massive two-dimensional quantum field theory, Phys. Rev. Lett.102 (2009) 031602 [arXiv:0803.1999] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys.A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  15. [15]
    O.A. Castro-Alvaredo and B. Doyon, Bi-partite entanglement entropy in massive QFT with a boundary: The Ising model, J. Stat. Phys.134 (2009) 105 [arXiv:0810.0219] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    O.A. Castro-Alvaredo and B. Doyon, Bi-partite entanglement entropy in massive 1+1-dimensional quantum field theories, J. Phys.A 42 (2009) 504006 [arXiv:0906.2946] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  17. [17]
    J.I. Latorre, C.A. Lütken, E. Rico and G. Vidal, Fine grained entanglement loss along renormalization group flows, Phys. Rev.A 71 (2005) 034301 [quant-ph/0404120] [INSPIRE].
  18. [18]
    B.-Q. Jin and V. Korepin, Quantum spin chain, Toeplitz determinants and Fisher-Hartwig conjecture, J. Stat. Phys.116 (2004) 79.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    N. Lambert, C. Emary and T. Brandes, Entanglement and the Phase Transition in Single-Mode Superradiance, Phys. Rev. Lett.92 (2004) 073602 [quant-ph/0309027] [INSPIRE].
  20. [20]
    J.P. Keating and F. Mezzadri, Entanglement in quantum spin chains, symmetry classes of random matrices and conformal field theory, Phys. Rev. Lett.94 (2005) 050501 [quant-ph/0504179] [INSPIRE].
  21. [21]
    R. Weston, The Entanglement entropy of solvable lattice models, J. Stat. Mech.0603 (2006) L03002 [math-ph/0601038] [INSPIRE].
  22. [22]
    P. Calabrese, M. Campostrini, F. Essler and B. Nienhuis, Parity effects in the scaling of block entanglement in gapless spin chains, Phys. Rev. Lett.104 (2010) 095701 [arXiv:0911.4660] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Fagotti and P. Calabrese, Universal parity effects in the entanglement entropy of XX chains with open boundary conditions, J. Stat. Mech.1101 (2011) P01017 [arXiv:1010.5796] [INSPIRE].MathSciNetGoogle Scholar
  24. [24]
    I. Peschel, On the entanglement entropy for an XY spin chain, J. Stat. Mech.0412 (2004) P12005 [cond-mat/0410416] [INSPIRE].
  25. [25]
    E. Ercolessi, S. Evangelisti and F. Ravanini, Exact entanglement entropy of the XYZ model and its sine-Gordon limit, Phys. Lett.A 374 (2010) 2101 [arXiv:0905.4000] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    E. Ercolessi, S. Evangelisti, F. Franchini and F. Ravanini, Essential singularity in the Renyi entanglement entropy of the one-dimensional XYZ spin-1/2 chain, Phys. Rev.B 83 (2011) 012402 [arXiv:1008.3892] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C.H. Bennett, H.J. Bernstein, S. Popescu and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev.A 53 (1996) 2046 [quant-ph/9511030] [INSPIRE].
  28. [28]
    V. Alba, M. Fagotti and P. Calabrese, Entanglement entropy of excited states, J. Stat. Mech.0910 (2009) P10020 [arXiv:0909.1999] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  29. [29]
    F.C. Alcaraz, M.I. Berganza and G. Sierra, Entanglement of low-energy excitations in Conformal Field Theory, Phys. Rev. Lett.106 (2011) 201601 [arXiv:1101.2881] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M.I. Berganza, F.C. Alcaraz and G. Sierra, Entanglement of excited states in critical spin chians, J. Stat. Mech.1201 (2012) P01016 [arXiv:1109.5673] [INSPIRE].Google Scholar
  31. [31]
    J. Mölter, T. Barthel, U. Schollwöck and V. Alba, Bound states and entanglement in the excited states of quantum spin chains, J. Stat. Mech.1410 (2014) P10029 [arXiv:1407.0066] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  32. [32]
    O.A. Castro-Alvaredo, C. De Fazio, B. Doyon and I.M. Szécsényi, Entanglement Content of Quasiparticle Excitations, Phys. Rev. Lett.121 (2018) 170602 [arXiv:1805.04948] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  33. [33]
    O.A. Castro-Alvaredo, C. De Fazio, B. Doyon and I.M. Szécsényi, Entanglement content of quantum particle excitations. Part I. Free field theory, JHEP10 (2018) 039 [arXiv:1806.03247] [INSPIRE].
  34. [34]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech.0911 (2009) P11001 [arXiv:0905.2069] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  35. [35]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech.1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE].MathSciNetGoogle Scholar
  36. [36]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in quantum field theory, Phys. Rev. Lett.109 (2012) 130502 [arXiv:1206.3092] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in extended systems: A field theoretical approach, J. Stat. Mech.1302 (2013) P02008 [arXiv:1210.5359] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  38. [38]
    O.A. Castro-Alvaredo, C. De Fazio, B. Doyon and I.M. Szécsényi, Entanglement Content of Quantum Particle Excitations III. Graph Partition Functions, J. Math. Phys.60 (2019) 082301 [arXiv:1904.02615] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    H. Casini and M. Huerta, Reduced density matrix and internal dynamics for multicomponent regions, Class. Quant. Grav.26 (2009) 185005 [arXiv:0903.5284] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    K. Audenaert, J. Eisert, M.B. Plenio and R.F. Werner, Entanglement Properties of the Harmonic Chain, Phys. Rev.A 66 (2002) 042327 [quant-ph/0205025] [INSPIRE].
  41. [41]
    K. Zyczkowski, P. Horodecki, A. Sanpera and M. Lewenstein, On the volume of the set of mixed entangled states, Phys. Rev.A 58 (1998) 883 [quant-ph/9804024] [INSPIRE].
  42. [42]
    J. Eisert, Entanglement in quantum information theory, Ph.D. Thesis, University of Potsdam, Germany (2001), quant-ph/0610253.
  43. [43]
    M.B. Plenio, Logarithmic Negativity: A Full Entanglement Monotone That is not Convex, Phys. Rev. Lett.95 (2005) 090503 [quant-ph/0505071] [INSPIRE].
  44. [44]
    M.B. Plenio, Erratum: Logarithmic Negativity: A Full Entanglement Monotone That Is not Convex, Phys. Rev. Lett.95 (2005) 119902.ADSCrossRefGoogle Scholar
  45. [45]
    G. Vidal and R.F. Werner, Computable measure of entanglement, Phys. Rev.A 65 (2002) 032314 [quant-ph/0102117] [INSPIRE].
  46. [46]
    P. Calabrese, L. Tagliacozzo and E. Tonni, Entanglement negativity in the critical Ising chain, J. Stat. Mech.1305 (2013) P05002 [arXiv:1302.1113] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  47. [47]
    O. Blondeau-Fournier, O.A. Castro-Alvaredo and B. Doyon, Universal scaling of the logarithmic negativity in massive quantum field theory, J. Phys.A 49 (2016) 125401 [arXiv:1508.04026] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    D. Bianchini and O.A. Castro-Alvaredo, Branch Point Twist Field Correlators in the Massive Free Boson Theory, Nucl. Phys.B 913 (2016) 879 [arXiv:1607.05656] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    P. Fonseca and A. Zamolodchikov, Ward identities and integrable differential equations in the Ising field theory, hep-th/0309228 [INSPIRE].
  50. [50]
    M. Karowski and P. Weisz, Exact Form-Factors in (1+1)-Dimensional Field Theoretic Models with Soliton Behavior, Nucl. Phys.B 139 (1978) 455 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    F. Smirnov, Form factors in completely integrable models of quantum field theory, Adv. Series in Math. Phys.14, World Scientific, Singapore (1992).Google Scholar
  52. [52]
    V.P. Yurov and A.B. Zamolodchikov, Correlation functions of integrable 2-D models of relativistic field theory. Ising model, Int. J. Mod. Phys.A 6 (1991) 3419 [INSPIRE].
  53. [53]
    M. Sato, T. Miwa and M. Jimbo, Holonomic quantum fields IV, Publ. Res. Inst. Math. Sci. Kyoto15 (1979) 871 [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    O. Blondeau-Fournier and B. Doyon, Expectation values of twist fields and universal entanglement saturation of the free massive boson, J. Phys.A 50 (2017) 274001 [arXiv:1612.04238] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  55. [55]
    H. Bethe, Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette, Z. Physik71 (1931) 205.ADSzbMATHCrossRefGoogle Scholar
  56. [56]
    C.-N. Yang and C.P. Yang, Thermodynamics of one-dimensional system of bosons with repulsive delta function interaction, J. Math. Phys.10 (1969) 1115 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    B. Pozsgay and G. Takács, Form-factors in finite volume I: Form-factor bootstrap and truncated conformal space, Nucl. Phys.B 788 (2008) 167 [arXiv:0706.1445] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    B. Pozsgay and G. Takács, Form factors in finite volume. II. Disconnected terms and finite temperature correlators, Nucl. Phys.B 788 (2008) 209 [arXiv:0706.3605] [INSPIRE].
  59. [59]
  60. [60]
    M.B. Plenio, J. Hartley and J. Eisert, Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom, New J. Phys.6 (2004) 36.ADSCrossRefGoogle Scholar
  61. [61]
    M.B. Plenio, J. Eisert, J. Dreissig and M. Cramer, Entropy, entanglement and area: analytical results for harmonic lattice systems, Phys. Rev. Lett.94 (2005) 060503 [quant-ph/0405142] [INSPIRE].
  62. [62]
    M. Cramer, J. Eisert, M.B. Plenio and J. Dreissig, An Entanglement-area law for general bosonic harmonic lattice systems, Phys. Rev.A 73 (2006) 012309 [quant-ph/0505092] [INSPIRE].
  63. [63]
    I. Peschel and V. Eisler, Reduced density matrices and entanglement entropy in free lattice models, J. Phys.A 42 (2009) 504003.MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Mathematics, CityUniversity of London10 Northampton SquareU.K.
  2. 2.Department of MathematicsKing’s College LondonStrandU.K.

Personalised recommendations