Advertisement

Journal of High Energy Physics

, 2019:52 | Cite as

Three-dimensional extended Lifshitz, Schrödinger and Newton-Hooke supergravity

  • Nese Ozdemir
  • Mehmet OzkanEmail author
  • Utku Zorba
Open Access
Regular Article - Theoretical Physics
  • 28 Downloads

Abstract

We provide a systematic analysis of three-dimensional \( \mathcal{N} \) = 2 extended Bargmann superalgebra and its Newton-Hooke, Lifshitz and Schrödinger extensions. These algebras admit invariant non-degenerate bi-linear forms which we utilized to construct corresponding Chern-Simons supergravity actions.

Keywords

Classical Theories of Gravity Extended Supersymmetry Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée. (premìere partie), Annales Sci. Ecole Norm. Sup.40 (1923) 325.Google Scholar
  2. [2]
    E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée. (premìere partie) (Suite), Annales Sci. Ecole Norm. Sup.41 (1924) 1.Google Scholar
  3. [3]
    A. Trautman, Sur la theorie newtonienne de la gravitation, Compt. Rend. Acad. Sci. Paris247 (1963) 617.MathSciNetzbMATHGoogle Scholar
  4. [4]
    J. Ehlers, Über den Newtonschen Grenzwert, in Grundlagen-probleme der modernen Physik, J. Nitsch et al. eds., Bibliographisches Institut Mannheim, Germany (1981).Google Scholar
  5. [5]
    R. Andringa, E. Bergshoeff, S. Panda and M. de Roo, Newtonian gravity and the Bargmann algebra, Class. Quant. Grav.28 (2011) 105011 [arXiv:1011.1145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys.B 311 (1988) 46 [INSPIRE].
  7. [7]
    G. Papageorgiou and B.J. Schroers, A Chern-Simons approach to Galilean quantum gravity in 2+1 dimensions, JHEP11 (2009) 009 [arXiv:0907.2880] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    E.A. Bergshoeff and J. Rosseel, Three-dimensional extended Bargmann supergravity, Phys. Rev. Lett.116 (2016) 251601 [arXiv:1604.08042]. .
  9. [9]
    J. Hartong, Y. Lei and N.A. Obers, Nonrelativistic Chern-Simons theories and three-dimensional Hořava-Lifshitz gravity, Phys. Rev.D 94 (2016) 065027 [arXiv:1604.08054].
  10. [10]
    J. Hartong and N.A. Obers, Hǒrava-Lifshitz gravity from dynamical Newton-Cartan geometry, JHEP07 (2015) 155 [arXiv:1504.07461] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP06 (2011) 114 [arXiv:1105.0689] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    J.A. de Azcárraga, D. Gútiez and J.M. Izquierdo, Extended D = 3 Bargmann supergravity from a Lie algebra expansion, arXiv:1904.12786 [INSPIRE].
  14. [14]
    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Properties of conformal supergravity, Phys. Rev.D 17 (1978) 3179 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Kaku and P.K. Townsend, Poincare supergravity as broken superconformal gravity, Phys. Lett.B 76 (1978) 54.Google Scholar
  16. [16]
    S. Ferrara, M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauging the graded conformal group with unitary internal symmetries, Nucl. Phys.B 129 (1977) 125 [INSPIRE].
  17. [17]
    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauge theory of the conformal and superconformal group, Phys. Lett.B 69 (1977) 304.ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    H.R. Afshar et al., A Schrödinger approach to Newton-Cartan and Hořava-Lifshitz gravities, JHEP04 (2016) 145 [arXiv:1512.06277] [INSPIRE].
  19. [19]
    E. Bergshoeff, J. Rosseel and T. Zojer, Newton-Cartan supergravity with torsion and Schrödinger supergravity, JHEP11 (2015) 180 [arXiv:1509.04527] [INSPIRE].
  20. [20]
    E. Joung and W. Li, Nonrelativistic limits of colored gravity in three dimensions, Phys. Rev.D 97 (2018) 105020 [arXiv:1801.10143] [INSPIRE].
  21. [21]
    L. Avilés et al., Non-relativistic Maxwell Chern-Simons gravity, JHEP05 (2018) 047 [arXiv:1802.08453] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    P.K. Townsend and B. Zhang, Thermodynamics of “exotic” Bañados-Teitelboim-Zanelli black holes, Phys. Rev. Lett.110 (2013) 241302 [arXiv:1302.3874] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Andringa, E.A. Bergshoeff, J. Rosseel and E. Sezgin, 3D Newton-Cartan supergravity, Class. Quant. Grav.30 (2013) 205005 [arXiv:1305.6737] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    K. Peeters, A field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun.176 (2007) 550 [cs/0608005] [INSPIRE].
  25. [25]
    K. Peeters, Introducing Cadabra: a symbolic computer algebra system for field theory problems, hep-th/0701238 [INSPIRE].
  26. [26]
    N. Ozdemir, M. Ozkan, O. Tunca and U. Zorba, Three-dimensional extended newtonian (super)gravity, JHEP05 (2019) 130 [arXiv:1903.09377] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    M. Hatsuda and M. Sakaguchi, Wess-Zumino term for the AdS superstring and generalized Inonu-Wigner contraction, Prog. Theor. Phys.109 (2003) 853 [hep-th/0106114] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    J.A. de Azcarraga, J.M. Izquierdo, M. Picón and O. Varela, Generating Lie and gauge free differential (super)algebras by expanding Maurer-Cartan forms and Chern-Simons supergravity, Nucl. Phys.B 662 (2003) 185 [hep-th/0212347] [INSPIRE].
  29. [29]
    J.A. de Azcarraga, J.M. Izquierdo, M. Picón and O. Varela, Expansions of algebras and superalgebras and some applications, Int. J. Theor. Phys.46 (2007) 2738 [hep-th/0703017] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  30. [30]
    E. Bergshoeff, J.M. Izquierdo, T. Ortín and L. Romano, Lie algebra expansions and actions for non-relativistic gravity, JHEP08 (2019) 048 [arXiv:1904.08304] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional Anti-de Sitter supergravity theories, Phys. Lett.B 180 (1986) 89 [INSPIRE].
  32. [32]
    A. Achucarro and P.K. Townsend, Extended supergravities in d = (2 + 1) as Chern-Simons theories, Phys. Lett.B 229 (1989) 383 [INSPIRE].
  33. [33]
    L. Romano, Non-relativistic four dimensional p-brane supersymmetric theories and Lie algebra expansion, arXiv:1906.08220 [INSPIRE].
  34. [34]
    D.M. Peñafiel and P. Salgado-ReboLledó, Non-relativistic symmetries in three space-time dimensions and the Nappi-Witten algebra, Phys. Lett.B 798 (2019) 135005 [arXiv:1906.02161] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  35. [35]
    J. Negro, M. del Olmo and A. Rodriguez-Marco, Nonrelativistic conformal groups, J. Math. Phys.38 (1997) 3786.ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    M. Henkel, Local scale invariance and strongly anisotropic equilibrium critical systems, Phys. Rev. Lett.78 (1997) 1940 [cond-mat/9610174] [INSPIRE].
  37. [37]
    A. Galajinsky and I. Masterov, N = 4 ℓ-conformal Galilei superalgebra, Phys. Lett.B 771 (2017) 401 [arXiv:1705.02814] [INSPIRE].
  38. [38]
    A. Galajinsky and S. Krivonos, N = 4 ℓ-conformal Galilei superalgebras inspired by D(2, 1; α) supermultiplets, JHEP09 (2017) 131 [arXiv:1706.08300] [INSPIRE].
  39. [39]
    D. Chernyavsky and D. Sorokin, Three-dimensional (higher-spin) gravities with extended Schrödinger and l-conformal Galilean symmetries, JHEP07 (2019) 156 [arXiv:1905.13154] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations