Three-dimensional extended Lifshitz, Schrödinger and Newton-Hooke supergravity
Open Access
Regular Article - Theoretical PhysicsFirst Online:
- 28 Downloads
Abstract
We provide a systematic analysis of three-dimensional \( \mathcal{N} \) = 2 extended Bargmann superalgebra and its Newton-Hooke, Lifshitz and Schrödinger extensions. These algebras admit invariant non-degenerate bi-linear forms which we utilized to construct corresponding Chern-Simons supergravity actions.
Keywords
Classical Theories of Gravity Extended Supersymmetry Supergravity Models Download
to read the full article text
Notes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
References
- [1]E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée. (premìere partie), Annales Sci. Ecole Norm. Sup.40 (1923) 325.Google Scholar
- [2]E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée. (premìere partie) (Suite), Annales Sci. Ecole Norm. Sup.41 (1924) 1.Google Scholar
- [3]A. Trautman, Sur la theorie newtonienne de la gravitation, Compt. Rend. Acad. Sci. Paris247 (1963) 617.MathSciNetzbMATHGoogle Scholar
- [4]J. Ehlers, Über den Newtonschen Grenzwert, in Grundlagen-probleme der modernen Physik, J. Nitsch et al. eds., Bibliographisches Institut Mannheim, Germany (1981).Google Scholar
- [5]R. Andringa, E. Bergshoeff, S. Panda and M. de Roo, Newtonian gravity and the Bargmann algebra, Class. Quant. Grav.28 (2011) 105011 [arXiv:1011.1145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [6]E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys.B 311 (1988) 46 [INSPIRE].
- [7]G. Papageorgiou and B.J. Schroers, A Chern-Simons approach to Galilean quantum gravity in 2+1 dimensions, JHEP11 (2009) 009 [arXiv:0907.2880] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [8]E.A. Bergshoeff and J. Rosseel, Three-dimensional extended Bargmann supergravity, Phys. Rev. Lett.116 (2016) 251601 [arXiv:1604.08042]. .
- [9]J. Hartong, Y. Lei and N.A. Obers, Nonrelativistic Chern-Simons theories and three-dimensional Hořava-Lifshitz gravity, Phys. Rev.D 94 (2016) 065027 [arXiv:1604.08054].
- [10]J. Hartong and N.A. Obers, Hǒrava-Lifshitz gravity from dynamical Newton-Cartan geometry, JHEP07 (2015) 155 [arXiv:1504.07461] [INSPIRE].ADSCrossRefGoogle Scholar
- [11]V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [12]G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP06 (2011) 114 [arXiv:1105.0689] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [13]J.A. de Azcárraga, D. Gútiez and J.M. Izquierdo, Extended D = 3 Bargmann supergravity from a Lie algebra expansion, arXiv:1904.12786 [INSPIRE].
- [14]M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Properties of conformal supergravity, Phys. Rev.D 17 (1978) 3179 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [15]M. Kaku and P.K. Townsend, Poincare supergravity as broken superconformal gravity, Phys. Lett.B 76 (1978) 54.Google Scholar
- [16]S. Ferrara, M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauging the graded conformal group with unitary internal symmetries, Nucl. Phys.B 129 (1977) 125 [INSPIRE].
- [17]M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauge theory of the conformal and superconformal group, Phys. Lett.B 69 (1977) 304.ADSMathSciNetCrossRefGoogle Scholar
- [18]H.R. Afshar et al., A Schrödinger approach to Newton-Cartan and Hořava-Lifshitz gravities, JHEP04 (2016) 145 [arXiv:1512.06277] [INSPIRE].
- [19]E. Bergshoeff, J. Rosseel and T. Zojer, Newton-Cartan supergravity with torsion and Schrödinger supergravity, JHEP11 (2015) 180 [arXiv:1509.04527] [INSPIRE].
- [20]E. Joung and W. Li, Nonrelativistic limits of colored gravity in three dimensions, Phys. Rev.D 97 (2018) 105020 [arXiv:1801.10143] [INSPIRE].
- [21]L. Avilés et al., Non-relativistic Maxwell Chern-Simons gravity, JHEP05 (2018) 047 [arXiv:1802.08453] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [22]P.K. Townsend and B. Zhang, Thermodynamics of “exotic” Bañados-Teitelboim-Zanelli black holes, Phys. Rev. Lett.110 (2013) 241302 [arXiv:1302.3874] [INSPIRE].ADSCrossRefGoogle Scholar
- [23]R. Andringa, E.A. Bergshoeff, J. Rosseel and E. Sezgin, 3D Newton-Cartan supergravity, Class. Quant. Grav.30 (2013) 205005 [arXiv:1305.6737] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [24]K. Peeters, A field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun.176 (2007) 550 [cs/0608005] [INSPIRE].
- [25]K. Peeters, Introducing Cadabra: a symbolic computer algebra system for field theory problems, hep-th/0701238 [INSPIRE].
- [26]N. Ozdemir, M. Ozkan, O. Tunca and U. Zorba, Three-dimensional extended newtonian (super)gravity, JHEP05 (2019) 130 [arXiv:1903.09377] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [27]M. Hatsuda and M. Sakaguchi, Wess-Zumino term for the AdS superstring and generalized Inonu-Wigner contraction, Prog. Theor. Phys.109 (2003) 853 [hep-th/0106114] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [28]J.A. de Azcarraga, J.M. Izquierdo, M. Picón and O. Varela, Generating Lie and gauge free differential (super)algebras by expanding Maurer-Cartan forms and Chern-Simons supergravity, Nucl. Phys.B 662 (2003) 185 [hep-th/0212347] [INSPIRE].
- [29]J.A. de Azcarraga, J.M. Izquierdo, M. Picón and O. Varela, Expansions of algebras and superalgebras and some applications, Int. J. Theor. Phys.46 (2007) 2738 [hep-th/0703017] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [30]E. Bergshoeff, J.M. Izquierdo, T. Ortín and L. Romano, Lie algebra expansions and actions for non-relativistic gravity, JHEP08 (2019) 048 [arXiv:1904.08304] [INSPIRE].ADSCrossRefGoogle Scholar
- [31]A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional Anti-de Sitter supergravity theories, Phys. Lett.B 180 (1986) 89 [INSPIRE].
- [32]A. Achucarro and P.K. Townsend, Extended supergravities in d = (2 + 1) as Chern-Simons theories, Phys. Lett.B 229 (1989) 383 [INSPIRE].
- [33]L. Romano, Non-relativistic four dimensional p-brane supersymmetric theories and Lie algebra expansion, arXiv:1906.08220 [INSPIRE].
- [34]D.M. Peñafiel and P. Salgado-ReboLledó, Non-relativistic symmetries in three space-time dimensions and the Nappi-Witten algebra, Phys. Lett.B 798 (2019) 135005 [arXiv:1906.02161] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [35]J. Negro, M. del Olmo and A. Rodriguez-Marco, Nonrelativistic conformal groups, J. Math. Phys.38 (1997) 3786.ADSMathSciNetCrossRefGoogle Scholar
- [36]M. Henkel, Local scale invariance and strongly anisotropic equilibrium critical systems, Phys. Rev. Lett.78 (1997) 1940 [cond-mat/9610174] [INSPIRE].
- [37]A. Galajinsky and I. Masterov, N = 4 ℓ-conformal Galilei superalgebra, Phys. Lett.B 771 (2017) 401 [arXiv:1705.02814] [INSPIRE].
- [38]A. Galajinsky and S. Krivonos, N = 4 ℓ-conformal Galilei superalgebras inspired by D(2, 1; α) supermultiplets, JHEP09 (2017) 131 [arXiv:1706.08300] [INSPIRE].
- [39]D. Chernyavsky and D. Sorokin, Three-dimensional (higher-spin) gravities with extended Schrödinger and l-conformal Galilean symmetries, JHEP07 (2019) 156 [arXiv:1905.13154] [INSPIRE].ADSCrossRefGoogle Scholar
Copyright information
© The Author(s) 2019