Journal of High Energy Physics

, 2019:49 | Cite as

(g − 2)μ versus flavor changing neutral current induced by the light (B − L)μτ boson

  • Zhaofeng Kang
  • Yoshihiro ShigekamiEmail author
Open Access
Regular Article - Theoretical Physics


We propose the local (B − L)μτ model, which minimally retains the local B − L extension for the sake of neutrino phenomenologies, and at the same time presents an invisible gauge boson Z′ with mass 𝒪 (10) MeV to account for the discrepancy of the muon anomalous magnetic moment. However such a scenario is challenged by flavor physics. To accommodate the correct pattern of Cabibbo-Kobayashi-Maskawa matrix, we have to introduce either a SU(2)L doublet flavon or vector-like quarks plus a singlet flavon. In either case Z′ induces flavor changing neutral current (FCNC) in the quark sector at tree-level. We find that the former scheme cannot naturally suppress the FCNC from the down-type quark sector and thus requires a large fine-tuning to avoid the stringent K → πν\( \overline{v} \) bound. Whereas the latter scheme, in which FCNC merely arises in the up-type quark sector, is still free of strong constraint. In particular, it opens a new window to test our scenario by searching for flavor-changing top quark decay mode t → u/c+(invisible), and the typical branching ratio 𝒪 (104).


Beyond Standard Model Heavy Quark Physics Kaon Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    A. Davidson, B l as the Fourth Color, Quark-Lepton Correspondence and Natural Masslessness of Neutrinos Within a Generalized Ws Model, Phys. Rev.D 20 (1979) 776 [INSPIRE].ADSGoogle Scholar
  2. [2]
    R.N. Mohapatra and R.E. Marshak, Local B-L Symmetry of Electroweak Interactions, Majorana Neutrinos and Neutron Oscillations, Phys. Rev. Lett.44 (1980) 1316 [Erratum ibid.44 (1980) 1643] [INSPIRE].
  3. [3]
    R.E. Marshak and R.N. Mohapatra, Quark-Lepton Symmetry and B-L as the U(1) Generator of the Electroweak Symmetry Group, Phys. Lett.B 91 (1980) 222 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P. Minkowski, μ → eγ at a Rate of One Out of 109Muon Decays?, Phys. Lett.B 67 (1977) 421 [INSPIRE].
  5. [5]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc.C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  6. [6]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc.C 7902131 (1979) 95.Google Scholar
  7. [7]
    S.L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser.B 61 (1980) 687.Google Scholar
  8. [8]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett.44 (1980) 912 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  9. [9]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev.D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  10. [10]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev.D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  11. [11]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  12. [12]
    I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ 23, δ CPand the mass ordering, JHEP01 (2019) 106 [arXiv:1811.05487] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2)μand α(\( {M}_z^2 \)) re-evaluated using new precise data, J. Phys.G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].
  14. [14]
    A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and α(\( {M}_z^2 \)): a new data-based analysis, Phys. Rev.D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].ADSGoogle Scholar
  15. [15]
    Muon g-2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev.D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  16. [16]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the Hadronic Contributions to the Muon g-2 and to alpha(MZ), Eur. Phys. J.C 71 (2011) 1515 [Erratum ibid.C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  17. [17]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g-2 and α(\( {m}_z^2 \)) using newest hadronic cross-section data, Eur. Phys. J.C 77 (2017) 827 [arXiv:1706.09436] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(\( {m}_z^2 \)), arXiv:1908.00921 [INSPIRE].
  19. [19]
    B.L. Roberts, Status of the Fermilab Muon (g − 2) Experiment, Chin. Phys.C 34 (2010) 741 [arXiv:1001.2898] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev.D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].
  21. [21]
    G. Mohlabeng, Revisiting the dark photon explanation of the muon anomalous magnetic moment, Phys. Rev.D 99 (2019) 115001 [arXiv:1902.05075] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R. Alonso, P. Cox, C. Han and T.T. Yanagida, Flavoured B − L local symmetry and anomalous rare B decays, Phys. Lett.B 774 (2017) 643 [arXiv:1705.03858] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    K.S. Babu, A. Friedland, P.A.N. Machado and I. Mocioiu, Flavor Gauge Models Below the Fermi Scale, JHEP12 (2017) 096 [arXiv:1705.01822] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. Elahi and A. Martin, LHC constraints on a (B − L)3gauge boson, Phys. Rev.D 100 (2019) 035016 [arXiv:1905.10106] [INSPIRE].
  25. [25]
    X.G. He, G.C. Joshi, H. Lew and R.R. Volkas, New Z-prime Phenomenology, Phys. Rev.D 43 (1991) 22 [INSPIRE].ADSGoogle Scholar
  26. [26]
    X.-G. He, G.C. Joshi, H. Lew and R.R. Volkas, Simplest Z-prime model, Phys. Rev.D 44 (1991) 2118 [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Baek, N.G. Deshpande, X.G. He and P. Ko, Muon anomalous g-2 and gauged L(muon)-L(tau) models, Phys. Rev.D 64 (2001) 055006 [hep-ph/0104141] [INSPIRE].
  28. [28]
    CCFR collaboration, Neutrino tridents and W Z interference, Phys. Rev. Lett.66 (1991) 3117 [INSPIRE].
  29. [29]
    BaBar collaboration, Search for a muonic dark force at BABAR, Phys. Rev.D 94 (2016) 011102 [arXiv:1606.03501] [INSPIRE].
  30. [30]
    B. Ahlgren, T. Ohlsson and S. Zhou, Comment on “Is Dark Matter with Long-Range Interactions a Solution to All Small-Scale Problems of Λ Cold Dark Matter Cosmology?”, Phys. Rev. Lett.111 (2013) 199001 [arXiv:1309.0991] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Kamada and H.-B. Yu, Coherent Propagation of PeV Neutrinos and the Dip in the Neutrino Spectrum at IceCube, Phys. Rev.D 92 (2015) 113004 [arXiv:1504.00711] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Escudero, D. Hooper, G. Krnjaic and M. Pierre, Cosmology with A Very Light L μ– L τGauge Boson, JHEP03 (2019) 071 [arXiv:1901.02010] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Bauer, P. Foldenauer and J. Jaeckel, Hunting All the Hidden Photons, JHEP07 (2018) 094 [arXiv:1803.05466] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    H. Davoudiasl, H.-S. Lee and W.J. Marciano, Muon g − 2, rare kaon decays and parity violation from dark bosons, Phys. Rev.D 89 (2014) 095006 [arXiv:1402.3620] [INSPIRE].
  35. [35]
    K. Fuyuto, W.-S. Hou and M. Kohda, Loophole in K → πν \( \overline{v} \)Search and New Weak Leptonic Forces, Phys. Rev. Lett.114 (2015) 171802 [arXiv:1412.4397] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Y.S. Jeong, C.S. Kim and H.-S. Lee, Constraints on the U(1)Lgauge boson in a wide mass range, Int. J. Mod. Phys.A 31 (2016) 1650059 [arXiv:1512.03179] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    K. Fuyuto, W.-S. Hou and M. Kohda, Z′ -induced FCNC decays of top, beauty and strange quarks, Phys. Rev.D 93 (2016) 054021 [arXiv:1512.09026] [INSPIRE].
  38. [38]
    K. Kaneta, Z. Kang and H.-S. Lee, Right-handed neutrino dark matter under the B – L gauge interaction, JHEP02 (2017) 031 [arXiv:1606.09317] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  39. [39]
    A. Datta, J. Liao and D. Marfatia, A light Z′ for the RK puzzle and nonstandard neutrino interactions, Phys. Lett.B 768 (2017) 265 [arXiv:1702.01099] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    T. Araki, S. Hoshino, T. Ota, J. Sato and T. Shimomura, Detecting the L μ− L τgauge boson at Belle II, Phys. Rev.D 95 (2017) 055006 [arXiv:1702.01497] [INSPIRE].
  41. [41]
    S.N. Gninenko and N.V. Krasnikov, Probing the muon g μ 2 anomaly, L μ− L τgauge boson and Dark Matter in dark photon experiments, Phys. Lett.B 783 (2018) 24 [arXiv:1801.10448] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Kamada, K. Kaneta, K. Yanagi and H.-B. Yu, Self-interacting dark matter and muon g − 2 in a gauged U(1)L μ−L τmodel, JHEP06 (2018) 117 [arXiv:1805.00651] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Biswas and A. Shaw, Reconciling dark matter, R K ()anomalies and (g − 2)μin an L μ− L τscenario, JHEP05 (2019) 165 [arXiv:1903.08745] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    W. Altmannshofer, S. Gori, S. Profumo and F.S. Queiroz, Explaining dark matter and B decay anomalies with an L μ− L τmodel, JHEP12 (2016) 106 [arXiv:1609.04026] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    P. Ko, T. Nomura and H. Okada, A flavor dependent gauge symmetry, Predictive radiative seesaw and LHCb anomalies, Phys. Lett.B 772 (2017) 547 [arXiv:1701.05788] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    S. Di Chiara et al., Minimal flavor-changing Z′ models and muon g − 2 after the R K ∗measurement, Nucl. Phys.B 923 (2017) 245 [arXiv:1704.06200] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  47. [47]
    C. Bonilla, T. Modak, R. Srivastava and J.W.F. Valle, U(1)B 33L μgauge symmetry as a simple description of b → s anomalies, Phys. Rev.D 98 (2018) 095002 [arXiv:1705.00915] [INSPIRE].
  48. [48]
    L. Bian, S.-M. Choi, Y.-J. Kang and H.M. Lee, A minimal flavored U (1)′ for B-meson anomalies, Phys. Rev.D 96 (2017) 075038 [arXiv:1707.04811] [INSPIRE].
  49. [49]
    A. Falkowski, S.F. King, E. Perdomo and M. Pierre, Flavourful Z′ portal for vector-like neutrino Dark Matter and R K (), JHEP08 (2018) 061 [arXiv:1803.04430] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    G. Arcadi, T. Hugle and F.S. Queiroz, The Dark L μ− L τRises via Kinetic Mixing, Phys. Lett.B 784 (2018) 151 [arXiv:1803.05723] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    E.J. Chun, A. Das, J. Kim and J. Kim, Searching for flavored gauge bosons, JHEP02 (2019) 093 [arXiv:1811.04320] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    P.T.P. Hutauruk, T. Nomura, H. Okada and Y. Orikasa, Dark matter and B-meson anomalies in a flavor dependent gauge symmetry, Phys. Rev.D 99 (2019) 055041 [arXiv:1901.03932] [INSPIRE].
  53. [53]
    Z.G. Berezhiani, The Weak Mixing Angles in Gauge Models with Horizontal Symmetry: A New Approach to Quark and Lepton Masses, Phys. Lett.B 129 (1983) 99.ADSCrossRefGoogle Scholar
  54. [54]
    D. Chang and R.N. Mohapatra, Small and Calculable Dirac Neutrino Mass, Phys. Rev. Lett.58 (1987) 1600 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Rajpoot, See-saw masses for quarks and leptons in an ambidextrous electroweak interaction model, Mod. Phys. Lett.A 2 (1987) 307 [Erratum ibid.A 2 (1987) 541] [INSPIRE].
  56. [56]
    S. Rajpoot, Seesaw Masses for Quarks and Leptons in an Ambidextrous Electroweak Interaction Model, Phys. Lett.B 191 (1987) 122 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S. Rajpoot, Seesaw Masses for Quarks and Leptons, Phys. Rev.D 36 (1987) 1479 [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    A. Davidson and K.C. Wali, Universal Seesaw Mechanism?, Phys. Rev. Lett.59 (1987) 393 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Rajpoot, Seesaw Fermion Masses in the Standard Model, Phys. Rev.D 39 (1989) 351 [INSPIRE].ADSGoogle Scholar
  60. [60]
    Z.G. Berezhiani and R. Rattazzi, Universal seesaw and radiative quark mass hierarchy, Phys. Lett.B 279 (1992) 124 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    Z. Kang, T. Li, T. Liu, C. Tong and J.M. Yang, Light Dark Matter from the U(1)XSector in the NMSSM with Gauge Mediation, JCAP01 (2011) 028 [arXiv:1008.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett.B 166 (1986) 196.ADSCrossRefGoogle Scholar
  63. [63]
    A. Pich, Effective field theory: Course, in Probing the standard model of particle interactions. Proceedings of Summer School in Theoretical Physics, NATO Advanced Study Institute, 68th session, Les Houches France (1997), pg. 949 [hep-ph/9806303] [INSPIRE].
  64. [64]
    G. Bellini et al., Precision measurement of the 7Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett.107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    R. Harnik, J. Kopp and P.A.N. Machado, Exploring nu Signals in Dark Matter Detectors, JCAP07 (2012) 026 [arXiv:1202.6073] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    Borexino collaboration, First Simultaneous Precision Spectroscopy of pp, 7Be and pep Solar Neutrinos with Borexino Phase-II, Phys. Rev.D 100 (2019) 082004 [arXiv:1707.09279] [INSPIRE].
  67. [67]
    J.P. Leveille, The Second Order Weak Correction to (G − 2) of the Muon in Arbitrary Gauge Models, Nucl. Phys.B 137 (1978) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    W. Altmannshofer, C.-Y. Chen, P.S. Bhupal Dev and A. Soni, Lepton flavor violating Z′ explanation of the muon anomalous magnetic moment, Phys. Lett.B 762 (2016) 389 [arXiv:1607.06832] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    P. Foldenauer and J. Jaeckel, Purely flavor-changing Z′ bosons and where they might hide, JHEP05 (2017) 010 [arXiv:1612.07789] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams, Phys. Rev. Lett.113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].
  71. [71]
    M.D. Goodsell, S. Liebler and F. Staub, Generic calculation of two-body partial decay widths at the full one-loop level, Eur. Phys. J.C 77 (2017) 758 [arXiv:1703.09237] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    CLICdp collaboration, Top-Quark Physics at the CLIC Electron-Positron Linear Collider, arXiv:1807.02441 [INSPIRE].
  73. [73]
    P. Ball and R. Zwicky, New results on B → π, K, η decay formfactors from light-cone sum rules, Phys. Rev.D 71 (2005) 014015 [hep-ph/0406232] [INSPIRE].
  74. [74]
    F. Mescia and C. Smith, Improved estimates of rare K decay matrix-elements from Kl3 decays, Phys. Rev.D 76 (2007) 034017 [arXiv:0705.2025] [INSPIRE].
  75. [75]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  76. [76]
    BaBar collaboration, Search for B → K ()ν \( \overline{v} \)and invisible quarkonium decays, Phys. Rev.D 87 (2013) 112005 [arXiv:1303.7465] [INSPIRE].
  77. [77]
    BNL-E949 collaboration, Study of the decay K +→ π + ν\( \overline{v} \)in the momentum region 140 < Pπ < 199 MeV/c, Phys. Rev.D 79 (2009) 092004 [arXiv:0903.0030] [INSPIRE].
  78. [78]
    KOTO collaboration, Search for the KL → π 0ν \( \overline{v} \)and KL → π 0X 0decays at the J-PARC KOTO experiment, Phys. Rev. Lett.122 (2019) 021802 [arXiv:1810.09655] [INSPIRE].
  79. [79]
    Y. Grossman and Y. Nir, K L→ π 0νν beyond the standard model, Phys. Lett.B 398 (1997) 163 [hep-ph/9701313] [INSPIRE].
  80. [80]
    LHCb collaboration, Search for the rare decay D 0→ μ +μ , Phys. Lett.B 725 (2013) 15 [arXiv:1305.5059] [INSPIRE].
  81. [81]
    S. Andreas et al., Proposal for an Experiment to Search for Light Dark Matter at the SPS, arXiv:1312.3309 [INSPIRE].
  82. [82]
    NA64 collaboration, Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS, Phys. Rev. Lett.118 (2017) 011802 [arXiv:1610.02988] [INSPIRE].
  83. [83]
    NA64 collaboration, Search for vector mediator of Dark Matter production in invisible decay mode, Phys. Rev.D 97 (2018) 072002 [arXiv:1710.00971] [INSPIRE].
  84. [84]
    S.N. Gninenko, N.V. Krasnikov and V.A. Matveev, Muon g − 2 and searches for a new leptophobic sub-GeV dark boson in a missing-energy experiment at CERN, Phys. Rev.D 91 (2015) 095015 [arXiv:1412.1400] [INSPIRE].
  85. [85]
    W. Altmannshofer, S. Gori, J. Martín-Albo, A. Sousa and M. Wallbank, Neutrino Tridents at DUNE, arXiv:1902.06765 [INSPIRE].
  86. [86]
    C. Cai, Z. Kang, H.-H. Zhang and Y.-P. Zeng, Minimal dark matter in SU(2)L× U(1)Y× U(1)B−L, Phys. Lett.B 784 (2018) 385 [arXiv:1801.05594] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of PhysicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations