Journal of High Energy Physics

, 2019:31 | Cite as

Light hidden mesons through the Z portal

  • Hsin-Chia Cheng
  • Lingfeng Li
  • Ennio SalvioniEmail author
  • Christopher B. Verhaaren
Open Access
Regular Article - Theoretical Physics


Confining hidden sectors are an attractive possibility for physics beyond the Standard Model (SM). They are especially motivated by neutral naturalness theories, which reconcile the lightness of the Higgs with the strong constraints on colored top partners. We study hidden QCD with one light quark flavor, coupled to the SM via effective operators suppressed by the mass M of new electroweak-charged particles. This effective field theory is inspired by a new tripled top model of supersymmetric neutral naturalness. The hidden sector is accessed primarily via the Z and Higgs portals, which also mediate the decays of the hidden mesons back to SM particles. We find that exotic Z decays at the LHC and future Z factories provide the strongest sensitivity to this scenario, and we outline a wide array of searches. For a larger hidden confinement scale Λ ∼ O (10) GeV, the exotic Z decays dominantly produce final states with two hidden mesons. ATLAS and CMS can probe their prompt decays up to M ∼ 3 TeV at the high luminosity phase, while a TeraZ factory would extend the reach up to M ∼ 20 TeV through a combination of searches for prompt and displaced signals. For smaller Λ ∼ O (1) GeV, the Z decays to the hidden sector produce jets of hidden mesons, which are long-lived. LHCb will be a powerful probe of these emerging jets. Furthermore, the light hidden vector meson could be detected by proposed dark photon searches.


Beyond Standard Model Effective Field Theories Nonperturbative Effects 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett.B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].
  2. [2]
    Z. Chacko, H.-S. Goh and R. Harnik, The Twin Higgs: Natural electroweak breaking from mirror symmetry, Phys. Rev. Lett.96 (2006) 231802 [hep-ph/0506256] [INSPIRE].
  3. [3]
    H. Cai, H.-C. Cheng and J. Terning, A Quirky Little Higgs Model, JHEP05 (2009) 045 [arXiv:0812.0843] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    D. Poland and J. Thaler, The Dark Top, JHEP11 (2008) 083 [arXiv:0808.1290] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    B. Batell and M. McCullough, Neutrino Masses from Neutral Top Partners, Phys. Rev.D 92 (2015) 073018 [arXiv:1504.04016] [INSPIRE].
  6. [6]
    J. Serra and R. Torre, Neutral naturalness from the brother-Higgs model, Phys. Rev.D 97 (2018) 035017 [arXiv:1709.05399] [INSPIRE].
  7. [7]
    C. Csáki, T. Ma and J. Shu, Trigonometric Parity for Composite Higgs Models, Phys. Rev. Lett.121 (2018) 231801 [arXiv:1709.08636] [INSPIRE].
  8. [8]
    J. Serra, S. Stelzl, R. Torre and A. Weiler, Hypercharged Naturalness, arXiv:1905.02203 [INSPIRE].
  9. [9]
    G. Burdman, Z. Chacko, H.-S. Goh and R. Harnik, Folded supersymmetry and the LEP paradox, JHEP02 (2007) 009 [hep-ph/0609152] [INSPIRE].
  10. [10]
    H.-C. Cheng, L. Li, E. Salvioni and C.B. Verhaaren, Singlet Scalar Top Partners from Accidental Supersymmetry, JHEP05 (2018) 057 [arXiv:1803.03651] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T. Cohen, N. Craig, G.F. Giudice and M. Mccullough, The Hyperbolic Higgs, JHEP05 (2018) 091 [arXiv:1803.03647] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    N. Craig, A. Katz, M. Strassler and R. Sundrum, Naturalness in the Dark at the LHC, JHEP07 (2015) 105 [arXiv:1501.05310] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Kang and M.A. Luty, Macroscopic Strings and ‘Quirks’ at Colliders, JHEP11 (2009) 065 [arXiv:0805.4642] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Burdman, Z. Chacko, H.-S. Goh, R. Harnik and C.A. Krenke, The Quirky Collider Signals of Folded Supersymmetry, Phys. Rev.D 78 (2008) 075028 [arXiv:0805.4667] [INSPIRE].
  15. [15]
    R. Harnik and T. Wizansky, Signals of New Physics in the Underlying Event, Phys. Rev.D 80 (2009) 075015 [arXiv:0810.3948] [INSPIRE].
  16. [16]
    R. Fok and G.D. Kribs, Chiral Quirkonium Decays, Phys. Rev.D 84 (2011) 035001 [arXiv:1106.3101] [INSPIRE].
  17. [17]
    R. Harnik, G.D. Kribs and A. Martin, Quirks at the Tevatron and Beyond, Phys. Rev.D 84 (2011) 035029 [arXiv:1106.2569] [INSPIRE].
  18. [18]
    Z. Chacko, D. Curtin and C.B. Verhaaren, A Quirky Probe of Neutral Naturalness, Phys. Rev.D 94 (2016) 011504 [arXiv:1512.05782] [INSPIRE].
  19. [19]
    M. Geller and O. Telem, Holographic Twin Higgs Model, Phys. Rev. Lett.114 (2015) 191801 [arXiv:1411.2974] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Barbieri, D. Greco, R. Rattazzi and A. Wulzer, The Composite Twin Higgs scenario, JHEP08 (2015) 161 [arXiv:1501.07803] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Low, A. Tesi and L.-T. Wang, Twin Higgs mechanism and a composite Higgs boson, Phys. Rev.D 91 (2015) 095012 [arXiv:1501.07890] [INSPIRE].
  22. [22]
    H.-C. Cheng, S. Jung, E. Salvioni and Y. Tsai, Exotic Quarks in Twin Higgs Models, JHEP03 (2016) 074 [arXiv:1512.02647] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    H.-C. Cheng, E. Salvioni and Y. Tsai, Exotic electroweak signals in the twin Higgs model, Phys. Rev.D 95 (2017) 115035 [arXiv:1612.03176] [INSPIRE].ADSGoogle Scholar
  24. [24]
    F. Farchioni, I. Montvay, G. Munster, E.E. Scholz, T. Sudmann and J. Wuilloud, Hadron masses in QCD with one quark flavour, Eur. Phys. J.C 52 (2007) 305 [arXiv:0706.1131] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Creutz, One flavor QCD, Annals Phys.322 (2007) 1518 [hep-th/0609187] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H.-C. Cheng, L. Li, E. Salvioni and C.B. Verhaaren, work in progress.Google Scholar
  27. [27]
    I. García García, R. Lasenby and J. March-Russell, Twin Higgs Asymmetric Dark Matter, Phys. Rev. Lett.115 (2015) 121801 [arXiv:1505.07410] [INSPIRE].
  28. [28]
    M. Farina, Asymmetric Twin Dark Matter, JCAP11 (2015) 017 [arXiv:1506.03520] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Terning, C.B. Verhaaren and K. Zora, Composite Twin Dark Matter, Phys. Rev.D 99 (2019) 095020 [arXiv:1902.08211] [INSPIRE].
  30. [30]
    J. Fan, M. Reece and L.-T. Wang, Possible Futures of Electroweak Precision: ILC, FCC-ee and CEPC, JHEP09 (2015) 196 [arXiv:1411.1054] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M.J. Strassler and K.M. Zurek, Discovering the Higgs through highly-displaced vertices, Phys. Lett.B 661 (2008) 263 [hep-ph/0605193] [INSPIRE].
  32. [32]
    D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev.D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].
  33. [33]
    Z. Liu, L.-T. Wang and H. Zhang, Exotic decays of the 125 GeV Higgs boson at future e +e lepton colliders, Chin. Phys.C 41 (2017) 063102 [arXiv:1612.09284] [INSPIRE].
  34. [34]
    S. Alipour-Fard, N. Craig, M. Jiang and S. Koren, Long Live the Higgs Factory: Higgs Decays to Long-Lived Particles at Future Lepton Colliders, Chin. Phys.C 43 (2019) 053101 [arXiv:1812.05588] [INSPIRE].
  35. [35]
    N. Blinov, E. Izaguirre and B. Shuve, Rare Z Boson Decays to a Hidden Sector, Phys. Rev.D 97 (2018) 015009 [arXiv:1710.07635] [INSPIRE].
  36. [36]
    J. Liu, L.-T. Wang, X.-P. Wang and W. Xue, Exposing the dark sector with future Z factories, Phys. Rev.D 97 (2018) 095044 [arXiv:1712.07237] [INSPIRE].
  37. [37]
    ATLAS collaboration, Measurement of W ±and Z -boson production cross sections in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett.B 759 (2016) 601 [arXiv:1603.09222] [INSPIRE].
  38. [38]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J.C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    HL/HE WG2 group collaboration, Higgs Physics at the HL-LHC and HE-LHC, arXiv:1902.00134 [INSPIRE].
  40. [40]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept.427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  41. [41]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  42. [42]
    M.J. Dolan, F. Kahlhoefer, C. McCabe and K. Schmidt-Hoberg, A taste of dark matter: Flavour constraints on pseudoscalar mediators, JHEP03 (2015) 171 [Erratum ibid.07 (2015) 103] [arXiv:1412.5174] [INSPIRE].
  43. [43]
    U. Haisch, J.F. Kamenik, A. Malinauskas and M. Spira, Collider constraints on light pseudoscalars, JHEP03 (2018) 178 [arXiv:1802.02156] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    D. McKeen, Constraining Light Bosons with Radiative Upsilon(1S) Decays, Phys. Rev.D 79 (2009) 015007 [arXiv:0809.4787] [INSPIRE].
  45. [45]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs Boson Interactions with Nucleons, Phys. Lett.78B (1978) 443 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    Quarkonium Working Group collaboration, Heavy quarkonium physics, hep-ph/0412158 [INSPIRE].
  47. [47]
    P. Schwaller, D. Stolarski and A. Weiler, Emerging Jets, JHEP05 (2015) 059 [arXiv:1502.05409] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J.A. Dror, R. Lasenby and M. Pospelov, Dark forces coupled to nonconserved currents, Phys. Rev.D 96 (2017) 075036 [arXiv:1707.01503] [INSPIRE].
  49. [49]
    CMS collaboration, Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two muons and two b quarks in pp collisions at 13 TeV, Phys. Lett.B 795 (2019) 398 [arXiv:1812.06359] [INSPIRE].
  50. [50]
    ATLAS collaboration, Search for Higgs boson decays into a pair of light bosons in the bbμμ final state in pp collision at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett.B 790 (2019) 1 [arXiv:1807.00539] [INSPIRE].
  51. [51]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  52. [52]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  54. [54]
    DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  55. [55]
    CMS collaboration, Search for an L μ− L τgauge boson using Z → 4μ events in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett.B 792 (2019) 345 [arXiv:1808.03684] [INSPIRE].
  56. [56]
    ATLAS collaboration, Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at \( \sqrt{s} \) = 13 TeV, JHEP06 (2018) 166 [arXiv:1802.03388] [INSPIRE].
  57. [57]
    D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating Dark Photons with High-Energy Colliders, JHEP02 (2015) 157 [arXiv:1412.0018] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    ATLAS collaboration, Search for the Production of a Long-Lived Neutral Particle Decaying within the ATLAS Hadronic Calorimeter in Association with a Z Boson from pp Collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett.122 (2019) 151801 [arXiv:1811.02542] [INSPIRE].
  59. [59]
    CMS collaboration, Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP03 (2018) 166 [arXiv:1709.05406] [INSPIRE].
  60. [60]
    ATLAS collaboration, Search for long-lived, weakly interacting particles that decay to displaced hadronic jets in proton-proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Rev.D 92 (2015) 012010 [arXiv:1504.03634] [INSPIRE].
  61. [61]
    J. Beacham, Searching for long-lived particles at future e +e machines, Talk at the International Workshop on the High Energy CEPC, 2018,
  62. [62]
    T. Cohen, M. Lisanti and H.K. Lou, Semivisible Jets: Dark Matter Undercover at the LHC, Phys. Rev. Lett.115 (2015) 171804 [arXiv:1503.00009] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    CMS collaboration, Search for new particles decaying to a jet and an emerging jet, JHEP02 (2019) 179 [arXiv:1810.10069] [INSPIRE].
  64. [64]
    A. Pierce, B. Shakya, Y. Tsai and Y. Zhao, Searching for confining hidden valleys at LHCb, ATLAS and CMS, Phys. Rev.D 97 (2018) 095033 [arXiv:1708.05389] [INSPIRE].
  65. [65]
    P. Ilten, Y. Soreq, J. Thaler, M. Williams and W. Xue, Proposed Inclusive Dark Photon Search at LHCb, Phys. Rev. Lett.116 (2016) 251803 [arXiv:1603.08926] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    H. Davoudiasl, H.-S. Lee and W.J. Marciano, ‘Dark’ Z implications for Parity Violation, Rare Meson Decays and Higgs Physics, Phys. Rev.D 85 (2012) 115019 [arXiv:1203.2947] [INSPIRE].ADSGoogle Scholar
  67. [67]
    J.A. Dror, R. Lasenby and M. Pospelov, Light vectors coupled to bosonic currents, Phys. Rev.D 99 (2019) 055016 [arXiv:1811.00595] [INSPIRE].
  68. [68]
    M. Bauer, P. Foldenauer and J. Jaeckel, Hunting All the Hidden Photons, JHEP07 (2018) 094 [arXiv:1803.05466] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J. Beacham et al., Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report, arXiv:1901.09966 [INSPIRE].
  70. [70]
    R. Essig et al., Working Group Report: New Light Weakly Coupled Particles, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, U.S.A., July 29 – August 6, 2013, arXiv:1311.0029 [INSPIRE].
  71. [71]
    J. Alexander et al., Dark Sectors 2016 Workshop: Community Report, 2016, arXiv:1608.08632, [INSPIRE].
  72. [72]
    FASER collaboration, FASER’s physics reach for long-lived particles, Phys. Rev.D 99 (2019) 095011 [arXiv:1811.12522] [INSPIRE].
  73. [73]
    A. Berlin, S. Gori, P. Schuster and N. Toro, Dark Sectors at the Fermilab SeaQuest Experiment, Phys. Rev.D 98 (2018) 035011 [arXiv:1804.00661] [INSPIRE].
  74. [74]
    S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys.79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    ATLAS collaboration, Projections for measurements of Higgs boson cross sections, branching ratios and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2013-014 (2013).Google Scholar
  76. [76]
    FCC collaboration, FCC Physics Opportunities, Eur. Phys. J.C 79 (2019) 474 [INSPIRE].
  77. [77]
    L. Borgonovi, Higgs measurements at FCC-hh, CERN-ACC-2018-0045 (2018).Google Scholar
  78. [78]
    J. Fan, M. Reece and L.-T. Wang, Precision Natural SUSY at CEPC, FCC-ee and ILC, JHEP08 (2015) 152 [arXiv:1412.3107] [INSPIRE].CrossRefGoogle Scholar
  79. [79]
    C. Anastasiou, E. Furlan and J. Santiago, Realistic Composite Higgs Models, Phys. Rev.D 79 (2009) 075003 [arXiv:0901.2117] [INSPIRE].
  80. [80]
    R. Barbieri, Ten Lectures on the ElectroWeak Interactions, [arXiv:0706.0684] [INSPIRE].
  81. [81]
    A. Orgogozo and S. Rychkov, Exploring T and S parameters in Vector Meson Dominance Models of Strong Electroweak Symmetry Breaking, JHEP03 (2012) 046 [arXiv:1111.3534] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    CMS collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, 2014 JINST9 P10009 [arXiv:1405.6569] [INSPIRE].
  83. [83]
    ATLAS collaboration, Performance of the ATLAS Inner Detector Track and Vertex Reconstruction in the High Pile-Up LHC Environment, ATLAS-CONF-2012-042 (2012).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Quantum Mathematics and Physics (QMAP), Department of PhysicsUniversity of CaliforniaDavisU.S.A.
  2. 2.Jockey Club Institute for Advanced StudyHong Kong University of Science and TechnologyKowloonHong Kong
  3. 3.Physik-DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations