Advertisement

Journal of High Energy Physics

, 2019:27 | Cite as

Critical point in a holographic defect field theory

  • Veselin G. FilevEmail author
  • R. C. Rashkov
Open Access
Regular Article - Theoretical Physics
  • 34 Downloads

Abstract

We study a holographic gauge theory dual to the D3/D5 intersection. We consider a pure gauge B-field flux through the internal two-sphere wrapped by the probe D5-brane, which corresponds to a non-commutative configuration of adjoint scalars. There is a domain wall separating the theory into regions with different ranks of the adjoint group. At zero temperature the theory is supersymmetric and at finite temperature there is a critical point of a second order phase transition. We study the corresponding critical exponents and find that the second derivatives of the free energy, with respect to the bare mass and the magnetic field, diverge with a critical exponent of 2/3.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    R.C. Myers and R.M. Thomson, Holographic mesons in various dimensions, JHEP09 (2006) 066 [hep-th/0605017] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in nonsupersymmet ric gauge/gravity duals, Phys. Rev.D 69 (2004) 066007 [hep-th/0306018] [INSPIRE].
  3. [3]
    T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, A Topology-changing phase transition and the dynamics of flavour, Phys. Rev.D 77 (2008) 066004 [hep-th/0605088] [INSPIRE].
  4. [4]
    S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP02 (2007) 016 [hep-th/0611099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    V.G. Filev, A Quantum Critical Point from Flavours on a Compact Space, JHEP08 (2014) 105 [arXiv:1406.5498] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    S. Chunlen, K. Peeters, P. Vanichchapongjaroen and M. Zamaklar, Signals of a new phase in \( \mathcal{N} \) = 2 gauge theory with a magnetic field on the three-sphere, JHEP09 (2014) 058 [arXiv:1405.1996] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev.D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].
  8. [8]
    D. Arean, A.V. Ramallo and D. Rodriguez-Gomez, Mesons and Higgs branch in defect theories, Phys. Lett.B 641 (2006) 393 [hep-th/0609010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    D. Arean, A.V. Ramallo and D. Rodriguez-Gomez, Holographic flavor on the Higgs branch, JHEP05 (2007) 044 [hep-th/0703094] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    R.C. Myers and M.C. Wapler, Transport Properties of Holographic Defects, JHEP12 (2008) 115 [arXiv:0811.0480] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP05 (2007) 067 [hep-th/0701132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    M.C. Wapler, Thermodynamics of Holographic Defects, JHEP01 (2010) 056 [arXiv:0911.2943] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Itsios, N. Jokela and A.V. Ramallo, Cold holographic matter in the Higgs branch, Phys. Lett.B 747 (2015) 229 [arXiv:1505.02629] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    V.G. Filev, C.V. Johnson and J.P. Shock, Universal Holographic Chiral Dynamics in an External Magnetic Field, JHEP08 (2009) 013 [arXiv:0903.5345] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Grignani, N. Kim and G.W. Semenoff, D3-D5 holography with flux, Phys. Lett.B 715 (2012) 225 [arXiv:1203.6162] [INSPIRE].
  16. [16]
    G. Grignani, N. Kim, A. Marini and G.W. Semenoff, Holographic D3-probe-D5 Model of a Double Layer Dirac Semimetal, JHEP12 (2014) 091 [arXiv:1410.4911] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G. Georgiou and D. Zoakos, Entanglement entropy of the Klebanov-Strassler model with dynamical flavors, JHEP07 (2015) 003 [arXiv:1505.01453] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    G. Grignani, A. Marini, A.-C. Pigna and G.W. Semenoff, Phase structure of a holographic double monolayer Dirac semimetal, JHEP06 (2016) 141 [arXiv:1603.02583] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    Y. Bea, N. Jokela and A.V. Ramallo, Quantum phase transitions with dynamical flavors, Phys. Rev.D 94 (2016) 026003 [arXiv:1604.03665] [INSPIRE].
  20. [20]
    T. Alho, V.G.M. Puletti, R. Pourhasan and L. Thorlacius, Monopole correlation functions and holographic phases of matter in 2+1 dimensions, Phys. Rev.D 94 (2016) 106012 [arXiv:1607.04059] [INSPIRE].
  21. [21]
    E. Conde, H. Lin, J.M. Penin, A.V. Ramallo and D. Zoakos, D3-D5 theories with unquenched flavors, Nucl. Phys.B 914 (2017) 599 [arXiv:1607.04998] [INSPIRE].
  22. [22]
    J.M. Penin, A.V. Ramallo and D. Zoakos, Anisotropic D3-D5 black holes with unquenched flavors, JHEP02 (2018) 139 [arXiv:1710.00548] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    G. Grignani, A. Marini, L. Papini and A.-C. Pigna, AC conductivities of a holographic Dirac semimetal, JHEP12 (2018) 109 [arXiv:1807.10717] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.School of Theoretical Physics, Dublin Institute for Advanced StudiesDublin 4Ireland
  3. 3.Department of PhysicsSofia UniversitySofiaBulgaria
  4. 4.Institute for Theoretical PhysicsVienna University of TechnologyViennaAustria

Personalised recommendations