Advertisement

Journal of High Energy Physics

, 2019:21 | Cite as

Brane annihilation in non-supersymmetric strings

  • Riccardo Antonelli
  • Ivano BasileEmail author
Open Access
Regular Article - Theoretical Physics
  • 23 Downloads

Abstract

In this paper we study non-perturbative instabilities in Anti-de Sitter vacua arising from flux compactifications of string models with broken supersymmetry. In the semi-classical limit, these processes drive the vacua towards lower fluxes, which translate into higher curvatures and higher string couplings. In order to shed some light on this regime, we provide evidence for a description in terms of branes, which generate near- horizon AdS throats. To this end, we study the attractor properties of the geometries near the throat, and we also characterize their asymptotics away from it. We also describe the instability within a probe-brane picture, finding an agreement between low-energy (super)gravity and brane instanton estimates of the decay rates.

Keywords

D-branes p-branes Nonperturbative Effects AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    W. Fischler and L. Susskind, Dilaton Tadpoles, String Condensates and Scale Invariance, Phys. Lett.B 171 (1986) 383 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    E. Dudas, G. Pradisi, M. Nicolosi and A. Sagnotti, On tadpoles and vacuum redefinitions in string theory, Nucl. Phys.B 708 (2005) 3 [hep-th/0410101] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    N. Kitazawa, Tadpole Resummations in String Theory, Phys. Lett.B 660 (2008) 415 [arXiv:0801.1702] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    R. Pius, A. Rudra and A. Sen, String Perturbation Theory Around Dynamically Shifted Vacuum, JHEP10 (2014) 070 [arXiv:1404.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Mourad and A. Sagnotti, AdS Vacua from Dilaton Tadpoles and Form Fluxes, Phys. Lett.B 768 (2017) 92 [arXiv:1612.08566] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  6. [6]
    L. Álvarez-Gaumé, P.H. Ginsparg, G.W. Moore and C. Vafa, An O(16) × O(16) Heterotic String, Phys. Lett.B 171 (1986) 155 [INSPIRE].
  7. [7]
    A. Sagnotti, Some properties of open string theories, in Supersymmetry and unification of fundamental interactions. Proceedings, International Workshop, SUSY 95, Palaiseau, France, 15–19 May 1995, pp. 473–484 (1995) [hep-th/9509080] [INSPIRE].
  8. [8]
    A. Sagnotti, Surprises in open string perturbation theory, Nucl. Phys. Proc. Suppl.56B (1997) 332 [hep-th/9702093] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    S. Sugimoto, Anomaly cancellations in type-I D9-\( \overline{D} \) 9 system and the USp(32) string theory, Prog. Theor. Phys.102 (1999) 685 [hep-th/9905159] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    L.J. Dixon and J.A. Harvey, String Theories in Ten-Dimensions Without Space-Time Supersymmetry, Nucl. Phys.B 274 (1986) 93 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    I. Antoniadis, E. Dudas and A. Sagnotti, Brane supersymmetry breaking, Phys. Lett.B 464 (1999) 38 [hep-th/9908023] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    C. Angelantonj, Comments on open string orbifolds with a nonvanishing Bab , Nucl. Phys.B 566 (2000) 126 [hep-th/9908064] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  13. [13]
    G. Aldazabal and A.M. Uranga, Tachyon free nonsupersymmetric type IIB orientifolds via brane-antibrane systems, JHEP10 (1999) 024 [hep-th/9908072] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  14. [14]
    C. Angelantonj, I. Antoniadis, G. D’Appollonio, E. Dudas and A. Sagnotti, Type I vacua with brane supersymmetry breaking, Nucl. Phys.B 572 (2000) 36 [hep-th/9911081] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    A. Sagnotti, Open Strings and their Symmetry Groups, in NATO Advanced Summer Institute on Nonperturbative Quantum Field Theory (Cargese Summer Institute), Cargese, France, 16–30 July 1987, pp. 0521–528 (1987) [hep-th/0208020] [INSPIRE].
  16. [16]
    G. Pradisi and A. Sagnotti, Open String Orbifolds, Phys. Lett.B 216 (1989) 59 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    P. Hǒrava, Strings on World Sheet Orbifolds, Nucl. Phys.B 327 (1989) 461 [INSPIRE].
  18. [18]
    P. Hǒrava, Background Duality of Open String Models, Phys. Lett.B 231 (1989) 251 [INSPIRE].
  19. [19]
    M. Bianchi and A. Sagnotti, On the systematics of open string theories, Phys. Lett.B 247 (1990) 517 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    M. Bianchi and A. Sagnotti, Twist symmetry and open string Wilson lines, Nucl. Phys.B 361 (1991) 519 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Bianchi, G. Pradisi and A. Sagnotti, Toroidal compactification and symmetry breaking in open string theories, Nucl. Phys.B 376 (1992) 365 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A. Sagnotti, A Note on the Green-Schwarz mechanism in open string theories, Phys. Lett.B 294 (1992) 196 [hep-th/9210127] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    E. Dudas, Theory and phenomenology of type-I strings and M-theory, Class. Quant. Grav.17 (2000) R41 [hep-ph/0006190] [INSPIRE].
  24. [24]
    C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept.371 (2002) 1 [Erratum ibid.376 (2003) 407] [hep-th/0204089] [INSPIRE].
  25. [25]
    J. Mourad and A. Sagnotti, An Update on Brane Supersymmetry Breaking, arXiv:1711.11494 [INSPIRE].
  26. [26]
    E. Dudas and J. Mourad, Consistent gravitino couplings in nonsupersymmetric strings, Phys. Lett.B 514 (2001) 173 [hep-th/0012071] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  27. [27]
    G. Pradisi and F. Riccioni, Geometric couplings and brane supersymmetry breaking, Nucl. Phys.B 615 (2001) 33 [hep-th/0107090] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    N. Kitazawa, Brane SUSY Breaking and the Gravitino Mass, JHEP04 (2018) 081 [arXiv:1802.03088] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    S. Abel, K.R. Dienes and E. Mavroudi, Towards a nonsupersymmetric string phenomenology, Phys. Rev.D 91 (2015) 126014 [arXiv:1502.03087] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Blaszczyk, S. Groot Nibbelink, O. Loukas and F. Ruehle, Calabi-Yau compactifications of non-supersymmetric heterotic string theory, JHEP10 (2015) 166 [arXiv:1507.06147] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    A. Sagnotti, Low-£ CMB from string-scale SUSY breaking?, Mod. Phys. Lett.A 32 (2016) 1730001 [arXiv:1509.08204] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Gruppuso, N. Kitazawa, N. Mandolesi, P. Natoli and A. Sagnotti, Pre-Inflationary Relics in the CMB?, Phys. Dark Univ.11 (2016) 68 [arXiv:1508.00411] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    A. Gruppuso, N. Kitazawa, M. Lattanzi, N. Mandolesi, P. Natoli and A. Sagnotti, The Evens and Odds of CMB Anomalies, Phys. Dark Univ.20 (2018) 49 [arXiv:1712.03288] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    S.S. Gubser and I. Mitra, Some interesting violations of the Breitenlohner-Freedman bound, JHEP07 (2002) 044 [hep-th/0108239] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    I. Basile, J. Mourad and A. Sagnotti, On Classical Stability with Broken Supersymmetry, JHEP01 (2019) 174 [arXiv:1811.11448] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    I.R. Klebanov and A.A. Tseytlin, D-branes and dual gauge theories in type 0 strings, Nucl. Phys.B 546 (1999) 155 [hep-th/9811035] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    C. Angelantonj and A. Armoni, RG flow, Wilson loops and the dilaton tadpole, Phys. Lett.B 482 (2000) 329 [hep-th/0003050] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    C. Angelantonj and A. Armoni, Nontachyonic type 0B orientifolds, nonsupersymmetric gauge theories and cosmological RG flow, Nucl. Phys.B 578 (2000) 239 [hep-th/9912257] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  39. [39]
    E. Dudas and J. Mourad, D-branes in nontachyonic 0B orientifolds, Nucl. Phys.B 598 (2001) 189 [hep-th/0010179] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  40. [40]
    R. Antonelli, I. Basile and A. Bombini, AdS Vacuum Bubbles, Holography and Dual RG Flows, Class. Quant. Grav.36 (2019) 045004 [arXiv:1806.02289] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    E. Dudas and J. Mourad, Brane solutions in strings with broken supersymmetry and dilaton tadpoles, Phys. Lett.B 486 (2000) 172 [hep-th/0004165] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    E. Dudas, J. Mourad and A. Sagnotti, Charged and uncharged D-branes in various string theories, Nucl. Phys.B 620 (2002) 109 [hep-th/0107081] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    J.D. Blum and K.R. Dienes, Duality without supersymmetry: The Case of the SO(16) × SO(16) string, Phys. Lett.B 414 (1997) 260 [hep-th/9707148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    J.D. Blum and K.R. Dienes, Strong/weak coupling duality relations for nonsupersymmetric string theories, Nucl. Phys.B 516 (1998) 83 [hep-th/9707160] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  45. [45]
    J.D. Brown and C. Teitelboim, Dynamical Neutralization of the Cosmological Constant, Phys. Lett.B 195 (1987) 177 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J.D. Brown and C. Teitelboim, Neutralization of the Cosmological Constant by Membrane Creation, Nucl. Phys.B 297 (1988) 787 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    J.J. Blanco-Pillado, D. Schwartz-Perlov and A. Vilenkin, Quantum Tunneling in Flux Compactifications, JCAP12 (2009) 006 [arXiv:0904.3106] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev.D 15 (1977) 2929 [Erratum ibid.D 16 (1977) 1248] [INSPIRE].
  49. [49]
    C.G. Callan Jr. and S.R. Coleman, The Fate of the False Vacuum. 2. First Quantum Corrections, Phys. Rev.D 16 (1977) 1762 [INSPIRE].
  50. [50]
    S.R. Coleman and F. De Luccia, Gravitational Effects on and of Vacuum Decay, Phys. Rev.D 21 (1980) 3305 [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    E. Witten, Instability of the Kaluza-Klein Vacuum, Nucl. Phys.B 195 (1982) 481 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  52. [52]
    A.R. Brown and A. Dahlen, Small Steps and Giant Leaps in the Landscape, Phys. Rev.D 82 (2010) 083519 [arXiv:1004.3994] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP02 (1999) 011 [hep-th/9812073] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP04 (1999) 017 [hep-th/9903224] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan and F. Riccioni, IIB supergravity revisited, JHEP08 (2005) 098 [hep-th/0506013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan, T. Ortín and F. Riccioni, SL(2, R)-invariant IIB Brane Actions, JHEP02 (2007) 007 [hep-th/0611036] [INSPIRE].
  57. [57]
    E.A. Bergshoeff and F. Riccioni, String Solitons and T-duality, JHEP05 (2011) 131 [arXiv:1102.0934] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    E.A. Bergshoeff and F. Riccioni, Heterotic wrapping rules, JHEP01 (2013) 005 [arXiv:1210.1422] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    E.A. Bergshoeff, V.A. Penas, F. Riccioni and S. Risoli, Non-geometric fluxes and mixed-symmetry potentials, JHEP11 (2015) 020 [arXiv:1508.00780] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a nonsupersymmetric field theory, JHEP06 (2002) 021 [hep-th/0112197] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    H. Ooguri and C. Vafa, Non-supersymmetric AdS and the Swampland, Adv. Theor. Math. Phys.21 (2017) 1787 [arXiv:1610.01533] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    G.T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys.B 360 (1991) 197 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    I.R. Klebanov, Tachyon stabilization in the AdS/CFT correspondence, Phys. Lett.B 466 (1999) 166 [hep-th/9906220] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys.104 (1986) 207 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    E. Witten, Baryons and branes in anti-de Sitter space, JHEP07 (1998) 006 [hep-th/9805112] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  67. [67]
    J.L.F. Barbon and E. Rabinovici, Holography of AdS vacuum bubbles, Nucl. Phys. Proc. Suppl.216 (2011) 121 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    R.C. Myers, Dielectric branes, JHEP12 (1999) 022 [hep-th/9910053] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. [69]
    S. Kachru and E. Silverstein, 4-D conformal theories and strings on orbifolds, Phys. Rev. Lett.80 (1998) 4855 [hep-th/9802183] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    A.E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four-dimensions, Nucl. Phys.B 533 (1998) 199 [hep-th/9803015] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    M. Bershadsky, Z. Kakushadze and C. Vafa, String expansion as large N expansion of gauge theories, Nucl. Phys.B 523 (1998) 59 [hep-th/9803076] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    M. Bershadsky and A. Johansen, Large N limit of orbifold field theories, Nucl. Phys.B 536 (1998) 141 [hep-th/9803249] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  73. [73]
    M. Schmaltz, Duality of nonsupersymmetric large N gauge theories, Phys. Rev.D 59 (1999) 105018 [hep-th/9805218] [INSPIRE].ADSMathSciNetGoogle Scholar
  74. [74]
    J. Erlich and A. Naqvi, Nonperturbative tests of the parent/orbifold correspondence in supersymmetric gauge theories, JHEP12 (2002) 047 [hep-th/9808026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    E. Palti, The Swampland: Introduction and Review, Fortsch. Phys.67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  76. [76]
    T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland and the Missing Corner, PoS(TASI2017)015 (2017) [arXiv:1711.00864] [INSPIRE].
  77. [77]
    U.H. Danielsson, G. Dibitetto and S.C. Vargas, Universal isolation in the AdS landscape, Phys. Rev.D 94 (2016) 126002 [arXiv:1605.09289] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Scuola Normale Superiore and I.N.F.N.PisaItaly

Personalised recommendations