Advertisement

Journal of High Energy Physics

, 2019:16 | Cite as

Stochastic eternal inflation is in the swampland

  • Suddhasattwa BrahmaEmail author
  • Sarah Shandera
Open Access
Regular Article - Theoretical Physics
  • 10 Downloads

Abstract

We demonstrate that there is no controlled description of stochastic eternal inflation consistent with the refined swampland de Sitter conjecture.

Keywords

Effective Field Theories Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S.K. Garg and C. Krishnan, Bounds on slow roll and the de Sitter swampland, arXiv: 1807.05193 [INSPIRE].
  2. [2]
    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter conjectures on the swampland, Phys. Lett.B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    R. Bousso, A covariant entropy conjecture, JHEP07 (1999) 004 [hep-th/9905177] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    T. Banks, Cosmological breaking of supersymmetry?, Int. J. Mod. Phys.A 16 (2001) 910 [hep-th/0007146] [INSPIRE].
  5. [5]
    H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    A. Vilenkin, The birth of inflationary universes, Phys. Rev.D 27 (1983) 2848 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A.D. Linde, Eternal chaotic inflation, Mod. Phys. Lett.A 1 (1986) 81 [INSPIRE].
  8. [8]
    A.D. Linde, Eternally existing selfreproducing chaotic inflationary universe, Phys. Lett.B 175 (1986) 395 [INSPIRE].
  9. [9]
    H. Matsui and F. Takahashi, Eternal inflation and swampland conjectures, Phys. Rev.D 99 (2019) 023533 [arXiv:1807.11938] [INSPIRE].
  10. [10]
    K. Dimopoulos, Steep eternal inflation and the swampland, Phys. Rev.D 98 (2018) 123516 [arXiv: 1810 .03438] [INSPIRE].
  11. [11]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, De Sitter space and the swampland, arXiv: 1806.08362 [INSPIRE].
  12. [12]
    W.H. Kinney, Eternal inflation and the refined swampland conjecture, Phys. Rev. Lett.122 (2019) 081302 [arXiv:1811.11698] [INSPIRE].
  13. [13]
    P. Creminelli, S. Dubovsky, A. Nicolis, L. Senatore and M. Zaldarriaga, The phase transition to slow-roll eternal inflation, JHEP09 (2008) 036 [arXiv: 0802.1067] [INSPIRE].
  14. [14]
    L. Leblond and S. Shandera, Simple bounds from the perturbative regime of inflation, JCAP08 (2008) 007 [arXiv :0802. 2290] [INSPIRE].
  15. [15]
    S. Shandera, The structure of correlation functions in single field inflation, Phys. Rev.D 79 (2009) 123518 [arXiv:0812.0818] [INSPIRE].
  16. [16]
    P. Creminelli, On non-Gaussianities in single-field inflation, JCAP10 (2003) 003 [astro-ph/0306122] [INSPIRE].
  17. [17]
    E. Silverstein and D. Tong, Scalar speed limits and cosmology: acceleration from D-eceleration, Phys. Rev.D 70 (2004) 103505 [ hep-th/0310221] [INSPIRE].
  18. [18]
    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The e ffective field theory of inflation, JHEP03 (2008) 014 [arXiv: 0709. 0293] [INSPIRE].
  19. [19]
    P. Adshead, W. Hu, C. Dvorkin and H.V. Peiris, Fast computation of bispectrum feature s with generalized slow roll, Phys. Rev.D 84 (2011) 043519 [arXiv:1102.3435] [INSPIRE].
  20. [20]
    X. Chen, M.-X. Huang, S. Kachru and G. Shiu, Observational signatures and non-Gaussianities of general single field inflation, JCAP01 (2007) 002 [hep-th/0605045] [INSPIRE].
  21. [21]
    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].
  22. [22]
    W.H. Kinney, S. Vagnozzi and L. Visinelli, The zoo plot meets the swampland: mutual (in) consistency of single-field inflation, string conjectures and cosmological data, Class. Quant. Grav.36 (2019) 117001 [arXiv:1808 .06424] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C.-M. Lin, Type I hilltop inflation and the refined swampland criteria, Phys. Rev.D 99 (2019) 023519 [arXiv:1810.11992] [INSPIRE].
  24. [24]
    G. Barenboim, W.-I. Park and W.H. Kinney, Eternal hilltop inflation, JCAP05 (2016) 030 [arXiv: 1601.08140] [INSPIRE].
  25. [25]
    A.D. Linde, Particle physics and inflationary cosmology, Contemp. Concepts Phys.5 (1990) 1 [hep-th/0503203] [INSPIRE].
  26. [26]
    A.A. Starobinsky, Stochastic de Sitter (inflationary) stage in the early universe, Lect. Notes Phys.246 (1986) 107 [INSPIRE].
  27. [27]
    A.H. Guth and S.-Y. Pi, The quantum mechanics of the scalar field in the new inflationary universe, Phys. Rev.D 32 (1985) 1899 [INSPIRE].
  28. [28]
    R. Bousso, B. Freivogel and I.-S. Yang, Eternal inflation: the inside story, Phys. Rev.D 74 (2006) 103516 [hep-th/0606114] [INSPIRE].
  29. [29]
    M. Motaharfar, V. Kamali and R.O. Ramos, Warm inflation as a way out of the swampland, Phys. Rev.D 99 (2019) 063513 [arXiv:1810.02816] [INSPIRE].
  30. [30]
    S. Das, Warm inflation in the light of swampland criteria, Phys. Rev.D 99 (2019) 063514 [arXiv: 1810 .05038] [INSPIRE].
  31. [31]
    J.J. Heckman, C. Lawrie, L. Lin, J. Sakstein and G. Zoccarato, Pixelated dark energy, Fortsch. Phys.67 (2019) 1900071 [arXiv: 1901.10489] [INSPIRE].
  32. [32]
    G. Dvali, C. Gomez and S. Zell, Quantum breaking bound on de Sitter and swampland, Fortsch. Phys.67 (2019) 1800094 [arXiv: 1810 .11002] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    A.D. Linde, Sinks in the landscape, Boltzmann brains and the cosmological constant problem, JCAP01 (2007) 022 [hep-th/0611043] [INSPIRE].
  34. [34]
    T. Clifton, A.D. Linde and N. Sivanandam, Islands in the landscape, JHEP02 (2007) 024 [hep-th/0701083] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Abia Pacific Center for Theoretical PhybicsPohangSouth Korea
  2. 2.Institute for Gravitation and the CosmosThe Pennsylvania State UniverbityUniversity ParkU.S.A.

Personalised recommendations