Journal of High Energy Physics

, 2019:14 | Cite as

Stringy black hole interiors

  • Amit Giveon
  • Nissan ItzhakiEmail author
Open Access
Regular Article - Theoretical Physics


It is well known that non-perturbative α corrections to the SL(2, ℝ)/U(1) cigar geometry are described via a condensation of a Sine-Liouville operator that schematically can be written as W+ + W, where W± describe a string with winding number ±1. This condensation leads to interesting effects in the cigar geometry that take place already at the classical level in string theory. Condensation of the analytically continued Sine-Liouville operator in the Lorentzian SL(2, ℝ)/U(1) black hole is problematic. Here, we propose that in the black hole case, the non-perturbative α corrections are described in terms of an operator that can be viewed as the analytic continuation of the fusion of W+ and W. We show that this operator does not suffer from the same problem as the analytically continued Sine-Liouville operator and argue that it describes folded strings that fill the entire black hole and, in a sense, replace the black hole interior. We estimate the folded strings radiation, and show that they radiate at the Hawking temperature.


2D Gravity Black Holes Black Holes in String Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    I. Bars and D. Nemeschansky, String propagation in backgrounds with curved space-time, Nucl. Phys.B 348 (1991) 89 [INSPIRE].
  2. [2]
    S. Elitzur, A. Forge and E. Rabinovici, Some global aspects of string compactifications, Nucl. Phys.B 359 (1991) 581 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    G. Mandal, A.M. Sengupta and S.R. Wadia, Classical solutions of two-dimensional string theory, Mod. Phys. Lett.A 6 (1991) 1685 [INSPIRE].
  4. [4]
    E. Witten, On string theory and black holes, Phys. Rev.D 44 (1991) 314 [INSPIRE].
  5. [5]
    R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, String propagation in a black hole geometry, Nucl. Phys.B 371 (1992) 269 [INSPIRE].
  6. [6]
    V.A. Fateev, A.B. Zamolodchikov and Al.B. Zamolodchikov, unpublished.Google Scholar
  7. [7]
    V. Kazakov, I.K. Kostov and D. Kutasov, A matrix model for the two-dimensional black hole, Nucl. Phys.B 622 (2002) 141 [hep-th/0101011] [INSPIRE].
  8. [8]
    A. Giveon and D. Kutasov, Notes on AdS 3 , Nucl. Phys.B 621 (2002) 303 [hep-th/0106004] [INSPIRE].
  9. [9]
    O. Aharony, A. Giveon and D. Kutasov, LSZ in LST, Nucl. Phys.B 691 (2004) 3 [hep-th/0404016] [INSPIRE].
  10. [10]
    J.L. Karczmarek, J.M. Maldacena and A. Strominger, Black hole non-formation in the matrix model, JHEP01 (2006) 039 [hep-th/0411174] [INSPIRE].
  11. [11]
    A. Giveon, D. Kutasov, E. Rabinovici and A. Sever, Phases of quantum gravity in AdS3 and linear dilaton backgrounds, Nucl. Phys.B 719 (2005) 3 [hep-th/0503121] [INSPIRE].
  12. [12]
    D. Kutasov, Accelerating branes and the string/black hole transition, hep-th/0509170 [INSPIRE].
  13. [13]
    A. Giveon, N. Itzhaki and D. Kutasov, Stringy horizons, JHEP06 (2015) 064 [arXiv:1502.03633] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    R. Ben-Israel, A. Giveon, N. Itzhaki and L. Liram, Stringy horizons and UV/IR mixing, JHEP11 (2015) 164 [arXiv:1506.07323] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Giveon, N. Itzhaki and D. Kutasov, Stringy horizons II, JHEP10 (2016) 157 [arXiv:1603.05822] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    J.M. Maldacena and A. Strominger, Semiclassical decay of near extremal five-branes, JHEP12 (1997) 008 [hep-th/9710014] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    N. Itzhaki, Stringy instability inside the black hole, JHEP10 (2018) 145 [arXiv:1808.02259] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    I. Bars and J. Schulze, Folded strings falling into a black hole, Phys. Rev.D 51 (1995) 1854 [hep-th/9405156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    I. Bars, Folded strings in curved space-time, hep-th/9411078 [INSPIRE].
  20. [20]
    I. Bars, Folded strings, hep-th/9412044 [INSPIRE].
  21. [21]
    M. Bershadsky and H. Ooguri, Hidden SL(n) symmetry in conformal field theories, Commun. Math. Phys.126 (1989) 49 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A. Gerasimov et al., Wess-Zumino-Witten model as a theory of free fields, Int. J. Mod. Phys.A 5 (1990) 2495 [INSPIRE].
  23. [23]
    G. Giribet and C.A. Núñez, Aspects of the free field description of string theory on AdS 3, JHEP06 (2000) 033 [hep-th/0006070] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Giribet and C.A. Núñez, Correlators in AdS 3string theory, JHEP06 (2001) 010 [hep-th/0105200] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Wakimoto, Fock representations of the affine lie algebra A 1 (1), Commun. Math. Phys.104 (1986) 605 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T. Fukuda and K. Hosomichi, Three point functions in sine-Liouville theory, JHEP09 (2001) 003 [hep-th/0105217] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    J. Polchinski, String theory and black hole complementarity, hep-th/9507094 [INSPIRE].
  28. [28]
    M. Bershadsky and D. Kutasov, Comment on gauged WZW theory, Phys. Lett.B 266 (1991) 345 [INSPIRE].
  29. [29]
    D.J. Gross and P.F. Mende, The high-energy behavior of string scattering amplitudes, Phys. Lett.B 197 (1987) 129 [INSPIRE].
  30. [30]
    D.J. Gross and P.F. Mende, String theory beyond the Planck scale, Nucl. Phys.B 303 (1988) 407 [INSPIRE].
  31. [31]
    A. Giveon and N. Itzhaki, String theory at the tip of the cigar, JHEP09 (2013) 079 [arXiv:1305.4799] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    J.J. Atick and E. Witten, The Hagedorn Transition and the Number of Degrees of Freedom of String Theory, Nucl. Phys.B 310 (1988) 291 [INSPIRE].
  33. [33]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys.2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  34. [34]
    A.M. Polyakov, Thermal properties of gauge fields and quark liberation, Phys. Lett.B 72 (1978) 477.Google Scholar
  35. [35]
    L. Susskind, Lattice models of quark confinement at high temperature, Phys. Rev.D 20 (1979) 2610 [INSPIRE].
  36. [36]
    O. Aharony and D. Kutasov, Holographic duals of long open strings, Phys. Rev.D 78 (2008) 026005 [arXiv:0803.3547] [INSPIRE].
  37. [37]
    J.B. Hartle and S.W. Hawking, Wave function of the universe, Phys. Rev.D 28 (1983) 2960 [Adv. Ser. Astrophys. Cosmol.3 (1987) 174] [INSPIRE].
  38. [38]
    O. Aharony and E. Witten, Anti-de Sitter space and the center of the gauge group, JHEP11 (1998) 018 [hep-th/9807205] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    J.M. Maldacena and H. Ooguri, Strings in AdS3 and the SL(2, ℝ) WZW model. Part 3. Correlation functions, Phys. Rev.D 65 (2002) 106006 [hep-th/0111180] [INSPIRE].
  40. [40]
    J.M. Maldacena, Long strings in two dimensional string theory and non-singlets in the matrix model, JHEP09 (2005) 078 [Int. J. Geom. Meth. Mod. Phys.3 (2006) 1] [hep-th/0503112] [INSPIRE].
  41. [41]
    K. Attali and N. Itzhaki, The averaged null energy condition and the black hole interior in string theory, Nucl. Phys.B 943 (2019) 114631 [arXiv:1811.12117] [INSPIRE].
  42. [42]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE].
  43. [43]
    J.M. Maldacena, Black holes in string theory, hep-th/9607235 [INSPIRE].
  44. [44]
    A.W. Peet, TASI lectures on black holes in string theory, hep-th/0008241 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael
  2. 2.Physics DepartmentTel-Aviv UniversityRamat-AvivIsrael

Personalised recommendations