Advertisement

Minimal D 4 truncations of type I lA

  • Oscar VarelaEmail author
Open Access
Regular Article - Theoretical Physics
  • 17 Downloads

Abstract

Consistent embeddings are found of the minimal \( \mathcal{N} \) = 2 and \( \mathcal{N} \) = 3 gauged supergravities in four dimensions into its maximally supersymmetric, \( \mathcal{N} \) = 8, counterpart with a dyonic ISO(7) gauging. These minimal truncations retain the metric along with relevant U(l) and S0(3) R-symmetry gauge fields selected from the ISO (7) ones. The remaining ISO (7) gauge fields are turned off, with subtleties introduced by the dyonic gauging, and the scalars are fixed to their expectation values at the \( \mathcal{N} \) = 2 and \( \mathcal{N} \) = 3 vacua of theN = 8 theory. Using the truncation formulae for massive type I IA supergravity on the six-sphere to D = 4 \( \mathcal{N} \) = 8 ISO (7) supergravity, the minimal D = 4 \( \mathcal{N} \) = 2 and \( \mathcal{N} \) = 3 gauged supergravities are then uplifted consistently to ten dimensions.

Keywords

Extended Supersymmetry Flux compactifications Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev.D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].
  2. [2]
    E. D’Hoker and P. Kraus, Magnetic Brane Solutions in AdS, JHEP10 (2009) 088 [arXiv:0908.3875] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J.P. Gauntlett, J. Sonner and D. Waldram, Universal fermionic spectral functions from string theory, Phys. Rev. Lett.107 (2011) 241601 [arXiv:1106.4694] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Martelli, A. Passias and J. Sparks, The supersymmetric NUTs and bolts of holography, Nucl. Phys.B 876 (2013) 810 [arXiv:1212.4618] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    R.A. Davison and A. Parnachev, Hydrodynamics of cold holographic matter, JHEP06 (2013) 100 [arXiv:1303.6334] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    D. Martelli and A. Passias, The gravity dual of supersymmetric gauge theories on a two-parameter deformed three-sphere, Nucl. Phys.B 877 (2013) 51 [arXiv:1306.3893] [INSPIRE].
  7. [7]
    D. Cassani and D. Martelli, The gravity dual of supersymmetric gauge theories on a squashed S 1 x S 3 , JHEP08 (2014) 044 [arXiv:1402.2278] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-brane s, JHEP07 (2016) 020 [arXiv:1511.09462] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, Holographic renormalization and supersymmetry, JHEP02 (2017) 132 [arXiv:1612.06761] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    M. Ammon, M. Kaminski, R. Koirala, J. Leiber and J. Wu, Quasinormal modes of charged magnetic black branes & chiral magnetic transport, JHEP04 (2017) 067 [arXiv:1701.05565] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    J.L. Blazquez-Salcedo, J. Kunz, F. Navarro-Lerida and E. Radu, AdS 5magnetized solutions in minimal gauged supergravity, Phys. Lett.B 771 (2017) 52 [arXiv:1703.04163] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  12. [12]
    F. Azzurli, N. Bobev, P.M. Crichigno, V.S. Min and A. Zaffaroni, A universal counting of black hole microstates in AdS 4, J HEP02 (2018) 054 [arXiv:1707.04257] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  13. [13]
    N. Bobev and P.M. Crichigno, Universal RG Flows Across Dimensions and Holography, JHEP12 (2017) 065 [arXiv:1708.05052] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    J.L. Blazquez-Salcedo, J. Kunz, F. Navarro-Lerida and E. Radu, New black holes in D = 5 minimal gauged supergravity: Deformed boundaries and frozen horizons, Phys. Rev.D 97 (2018) 081502 [arXiv:1711.08292] [INSPIRE].
  15. [15]
    A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, Microscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS 5black holes, arXiv:1810.11442 [INSPIRE].
  16. [16]
    P. Benetti Genolini, J.M. Perez Ipiiia and J. Sparks, Localization of the action in AdSjCFT, arXiv:1906.11249 [INSPIRE].
  17. [17]
    D. Gang, N. Kim and L.A. Pando Zayas, Precision Microstate Counting for the Entropy of Wrapped M5-branes, arXiv:1905.01559 [INSPIRE].
  18. [18]
    L. Romans, Massive N = 2a Supergravity in Ten-Dimensions, Phys. Lett. B 169 (1986) 374 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    E.S. Fradkin and M.A. Vasiliev, Model of Supergravity with Minimal Electromagnetic Interaction, LEBEDEV-76-197 (1976) [INSPIRE].
  20. [20]
    D.Z. Freedman and A.K. Das, Gauge Internal Symmetry in Extended Supergravity, Nucl. Phys.B 120 (1977) 221 [INSPIRE].
  21. [21]
    A. Guarino, D.L. Jafferis and O. Varela, String Theory Origin of Dyonic N = 8 Supergravity and Its Chern-Simons Duals, Phys. Rev. Lett.115 (2015) 091601 [arXiv:1504.08009] [INSPIRE].
  22. [22]
    Y. Pang and J. Rong, N = 3 solution in dyonic ISO(7) gauged maximal supergravity and its uplift to massive type IIA supergravity, Phys. Rev.D 92 (2015) 085037 [arXiv:1508.05376] [INSPIRE].
  23. [23]
    G.B. DeLuca, G.L. Monaco, N.T. Macpherson, A. Tomasiello and O. Varela, The geometry of \( \mathcal{N} \) = 3 AdS 4in massive IIA, JHEP08 (2018) 133 [arXiv:1805.04823] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general supersymmetric AdS solutions, Phys. Rev.D 76 (2007) 126007 [arXiv:0707.2315] [INSPIRE].
  25. [25]
    D. Cassani, G. Josse, M. Petrini and D. Waldram, Systematics of consistent truncations from generalised geometry, arXiv:1907.06730 [INSPIRE].
  26. [26]
    M.J. Duff and C.N. Pope, Consistent truncations in Kaluza-Klein theories, Nucl. Phys.B 255 (1985) 355 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    C.N. Pope and K.S. Stelle, Zilch Currents, Supersymmetry and Kaluza-Klein Consistency, Phys. Lett.B 198 (1987) 151 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    J.P. Gauntlett, D. Martelli, S. Pakis and D. Waldram, G structures and wrapped NS5-branes, Commun. Math. Phys.247 (2004) 421 [hep-th/0205050] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    C.N. Pope, Consistency of truncations in Kaluza-Klein, Conf. Proc.C 841031 (1984) 429 [INSPIRE].
  30. [30]
    C.N. Pope, The Embedding of the Einstein Yang-Mills Equations in d = 11 Supergravity, Class. Quant. Grav.2 (1985) 177 [INSPIRE].MathSciNetzbMATHGoogle Scholar
  31. [31]
    T.T. Tsikas, Consistent Truncations of Chiral N = 2 D = 10 Supergravity on the Round Five Sphere, Class. Quant. Grav.3 (1986) 733 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    A. Buchel and J.T. Liu, Gauged supergravity from type JIB string theory on Y p, qmanifolds, Nucl. Phys.B 771 (2007) 93 [hep-th/0608002] [INSPIRE].
  33. [33]
    J.P. Gauntlett, E. O Colgain and O. Varela, Properties of some conformal field theories with M-theory duals, JHEP02 (2007) 049 [hep-th/0611219] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  34. [34]
    J.P. Gauntlett and O. Varela, D = 5 SU (2) X U(1) Gauged Supergravity from D = 11 Supergravity, JHEP02 (2008) 083 [arXiv:0712.3560] [INSPIRE].
  35. [35]
    A. Passias, A. Rota and A. Tomasiello, Universal consistent truncation for 6d/7d gauge/gravit y duals, JHEP10 (2015) 187 [arXiv:1506.05462] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  36. [36]
    E. Malek, Half-Maximal Supersymmetry from Exceptional Field Theory, Fortsch. Phys.65 (2017) 1700061 [arXiv:1707.00714] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  37. [37]
    J. Hong, J.T. Liu and D.R. Mayerson, Gauged Six-Dimensional Supergravity from Warped JIB Reductions, JHEP09 (2018) 140 [arXiv:1808.04301] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  38. [38]
    E. Malek, H. Samtleben and V. Vall Carnell, Supersymmetric AdS 1and AdS 6vacua and their minimal consistent truncations from exceptional field theory, Phys. Lett.B 786 (2018) 171 [arXiv:1808.05597] [INSPIRE].
  39. [39]
    J.T. Liu and B. McPeak, Gauged Supergravity from the Lunin-Maldacena background, arXiv:1905.06861 [INSPIRE].
  40. [40]
    G. Larios and O. Varela, An M-theory free lunch, arXiv:1907.11027 [INSPIRE].
  41. [41]
    M. Petrini and A. Zaffaroni, N = 2 solutions of massive type IIA and their Chern-Simons duals, JHEP09 (2009) 107 [arXiv:0904.4915] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    D. Lust and D. Tsimpis, New supersymmetric AdS 4type-II vacua, JHEP09 (2009) 098 [arXiv:0906.2561] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    A. Passias, D. Prins and A. Tomasiello, A massive class of \( \mathcal{N} \) = 2 AdS 4IIA solutions, JHEP10 (2018) 071 [arXiv:1805.03661] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  44. [44]
    A. Guarino and O. Varela, Consistent \( \mathcal{N} \) = 8 truncation of massive IIA on S 6, JHEP12 (2015) 020 [arXiv:1509.02526] [INSPIRE].ADSzbMATHGoogle Scholar
  45. [45]
    F. Ciceri, A. Guarino and G. Inverso, The exceptional story of massive IIA supergravity, JHEP08 (2016) 154 [arXiv:1604.08602] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    D. Cassani, O. de Felice, M. Petrini, C. Strickland-Constable and D. Waldram, Exceptional generalised geometry for massive IIA and consistent reductions, JHEP08 (2016) 074 [arXiv:1605.00563] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    G. Inverso, H. Samtleben and M. Trigiante, Type II supergravity origin of dyonic gaugings, Phys. Rev.D 95 (2017) 066020 [arXiv:1612.05123] [INSPIRE].
  48. [48]
    G. Dall’ Agata, G. Inverso and M. Trigiante, Evidence for a family of 80(8) gauged supergravity theories, Phys. Rev. Lett.109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].
  49. [49]
    G. Dall’ Agata, G. Inverso and A. Marrani, Symplectic Deformations of Gauged Maximal Supergravity, JHEP07 (2014) 133 [arXiv:1405.2437] [INSPIRE].
  50. [50]
    G. Inverso, Electric-magnetic deformations of D = 4 gauged supergravities, JHEP03 (2016) 138 [arXiv:1512.04500] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    A. Guarino and O. Varela, Dyonic ISO(7) supergravity and the duality hierarchy, JHEP02 (2016) 079 [arXiv:1508.04432] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    A. Gallerati, H. Samtleben and M. Trigiante, The \( \mathcal{N} \)> 2 supersymmetric AdS vacua in maximal supergravity, J HEP12 (2014) 174 [arXiv:1410.0711] [INSPIRE].ADSGoogle Scholar
  53. [53]
    A. Guarino, J. Tarrío and O. Varela, Halving ISO(7) supergravity, arXiv:1907.11681 [INSPIRE].
  54. [54]
    B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies and M-theory, J HEP02 (2008) 044 [arXiv:0801.1294] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  55. [55]
    O. Varela, AdS 4solutions of massive IIA from dyonic ISO(7) supergravity, JHEP03 (2016) 071 [arXiv:1509.07117] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    E.A. Bergshoeff, J. Hartong, O. Hohm, M. Huebscher and T. Ortin, Gauge Theories, Duality Relations and the Tensor Hierarchy, JHEP04 (2009) 123 [arXiv:0901.2054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    Y. Pang, J. Rong and O. Varela, Spectrum universality properties of holographic Chern-Simons theories, JHEP01 (2018) 061 [arXiv:1711.07781] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    A. Guarino, J. Tarrío and O. Varela, Romans-mass-driven flows on the D2-brane, JHEP08 (2016) 168 [arXiv:1605.09254] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP04 (2009) 102 [arXiv:0901.0676] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    D. Cassani, G. Dall’ Agata and A.F. Faedo, Type JIB supergravity on squashed Sasaki- Einstein manifolds, JHEP05 (2010) 094 [arXiv:1003.4283] [INSPIRE].
  61. [61]
    J.P. Gauntlett and O. Varela, Universal Kaluza-Klein reductions of type JIB to N = 4 supergravity in five dimensions, JHEP06 (2010) 081 [arXiv:1003.5642] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  62. [62]
    J.T. Liu, P. Szepietowski and Z. Zhao, Consistent massive truncations of JIB supergravity on Sasaki- Einstein manifolds, Phys. Rev.D 81 (2010) 124028 [arXiv:1003.5374] [INSPIRE].
  63. [63]
    D. Cassani and P. Koerber, Tri-Sasakian consistent reduction, JHEP01 (2012) 086 [arXiv:1110.5327] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    D. Cassani, P. Koerber and O. Varela, All homogeneous N = 2 M-theory truncations with supersymmetric AdS 4vacua, JHEP11 (2012) 173 [arXiv:1208.1262] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  65. [65]
    A. Donos, J.P. Gauntlett, N. Kim and O. Varela, Wrapped M5-branes, consistent tru ncations and AdS/GMT, JHEP12 (2010) 003 [arXiv:1009.3805] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  66. [66]
    E. Malek, H. 8amtleben and V. Vall Carnell, Supersymmetric AdS 7and AdS 6vacua and their consistent truncations with vector multiplets, JHEP04 (2019) 088 [arXiv:1901.11039] [INSPIRE].
  67. [67]
    K.C.M. Cheung, J.P. Gauntlett and C. Rosen, Consistent KK truncations for M5-branes wrapped on Riemann surfaces, arXiv:1906.08900 [INSPIRE].
  68. [68]
    G. Larios, P. Ntokos and O. Varela, Embedding the SU(3) sector of SO(8) supergravity in D = 11, arXiv:1907.02087 [INSPIRE].
  69. [69]
    B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys.B 208 (1982) 323 [INSPIRE].
  70. [70]
    N.P. Warner, Some New Extrema of the Scalar Potentia l of Gauged N = 8 Supergravity, Phys. Lett.B 128 (1983) 169 [INSPIRE].
  71. [71]
    B. de Wit and H. Nicolai, The Consistency of the S 7Truncation in D = 11 Supergravity, Nucl. Phys.B 281 (1987) 211 [INSPIRE].
  72. [72]
    O. Varela, Complete D = 11 embedding of 80(8) supergravity, Phys. Rev.D 97 (2018) 045010 [arXiv:1512.04943] [INSPIRE].
  73. [73]
    E. Cremmer, B. Julia and J. 8cherk, Supergravity Theory in Eleven-Dimensions, Phys. Lett.B 76 (1978) 409 [INSPIRE].
  74. [74]
    R. Corrado, K. Pilch and N.P. Warner, An N = 2 supersymmetric membrane flow, Nucl. Phys.B 629 (2002) 74 [hep-th/0107220] [INSPIRE].
  75. [75]
    A. Guarino and J. Tarrío, BPS black holes from massive IIA on S 6, JHEP09 (2017) 141 [arXiv:1703.10833] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  76. [76]
    S.M. Hosseini, K. Hristov and A. Passias, Holographic microstate counting for AdS 4black holes in massive IIA supergravity, JHEP10 (2017) 190 [arXiv:1707.06884] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  77. [77]
    M.M. Caldarelli and D. Klemm, All supersymmetric solutions of N = 2, D = 4 gauged supergravity, JHEP09 (2003) 019 [hep-th/0307022] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    M. Fluder and J. Sparks, D2-brane Chern-Simons theories: F-maximization = a-maximization, JHEP01 (2016) 048 [arXiv:1507.05817] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhyrticsUtah State UniverrtityLoganU.S.A.
  2. 2.Departamento de Firtica Te6rica and Instituto de Firtica Te6rica UAM / CSICUniverrtidad Aut6noma de MadridMadridSpain

Personalised recommendations