Advertisement

Asymptotic structure of Einstein-Maxwell-dilaton theory and its five dimensional origin

  • H. Lü
  • Pujian MaoEmail author
  • Jun-Bao Wu
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

We consider Einstein-Maxwell-dilaton theory in four dimensions including the Kaluza-Klein theory and obtain the general asymptotic solutions in Bondi gauge. We find that there are three different types of news functions representing gravitational, electromagnetic, and scalar radiations. The mass density at any angle of the system can only decrease whenever there is any type of news function. The solution space of the Kaluza-Klein theory is also lifted to five dimensions. We also compute the asymptotic symmetries in both four dimensional Einstein-Maxwell-dilaton theory and five dimensional pure Einstein theory. We find that the symmetry algebras of the two theories are the same.

Keywords

Classical Theories of Gravity Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Land.A 269 (1962) 21 [INSPIRE].
  2. [2]
    J. de Boer and S.N. Solodukhin, A Holographic reduction of Minkowski space-time, Nucl. Phys.B 665 (2003) 545 [hep-th/0303006] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  3. [3]
    G. Arcioni and C. Dappiaggi, Exploring the holographic principle in asymptotically fiat space-times via the EMS group, Nucl. Phys.B 674 (2003) 553 [hep-th/0306142] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G. Arcioni and C. Dappiaggi, Holography in asymptotically fiat space-times and the EMS group, Class. Quant. Grav.21 (2004) 5655 [hep-th/0312186] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Dappiaggi, EMS field theory and holography in asymptotically fiat space-times, JHEP11 (2004) 011 [hep-th/0410026] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    C. Dappiaggi, V. Moretti and N. Pinamonti, Rigorous steps towards holography in asymptotically fiat spacetimes, Rev. Math. Phys.18 (2006) 349 [gr-qc/0506069] [INSPIRE].
  7. [7]
    G. Barnich and C. Troessaert, Symmetries of asymptotically fiat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett.105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    G. Barnich and C. Troessaert, Aspects of the BMSjCFT correspondence, JHEP05 (2010) 062 [arXiv:1001.1541] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS (CNCFG2010) 010 (2010) [Ann. U. Craiova Phys.21 (2011) Sll] [arXiv:1102.4632] [INSPIRE].
  10. [10]
    G. Barnich and C. Troessaert, EMS charge algebra, JHEP12 (2011) 105 [arXiv:1106.0213] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Barnich and C. Troessaert, Comments on holographic current algebras and asymptotically fiat four dimensional spacetimes at null infinity, JHEP11 (2013) 003 [arXiv:1309.0794] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino, Supertranslations and Superrotations at the Black Hole Horizon, Phys. Rev. Lett.116 (2016) 091101 [arXiv:1511.08687] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].
  14. [14]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett.116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP07 (2014) 151 [arXiv:1308.0589] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Strominger, On EMS Invariance of Gravitational Scattering, JHEP07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. He, V. Lysov, P. Mitra and A. Strominger, EMS supertranslations and Weinberg's soft graviton theorem, JHEP05 (2015) 151 [arXiv:1401.7026] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New Symmetries of Massless QED, JHEP10 (2014) 112 [arXiv:1407.3789] [INSPIRE].
  19. [19]
    T. He, P. Mitra and A. Strominger, 2D Kac-Moody Symmetry of 4D Yang-Mills Theory, JHEP10 (2016) 137 [arXiv:1503.02663] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    E. Conde and P. Mao, Remarks on asymptotic symmetries and the subleading soft photon theorem, Phys. Rev.D 95 (2017) 021701 [arXiv:1605.09731] [INSPIRE].ADSGoogle Scholar
  21. [21]
    E. Conde and P. Mao, EMS Supertranslations and Not So Soft Gravitons, JHEP05 (2017) 060 [arXiv:1612.08294] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Mao and J.-B. Wu, Note on asymptotic symmetries and soft gluon theorems, Phys. Rev.D 96 (2017) 065023 [arXiv:1704.05740] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    A. Strominger and A. Zhiboedov, Gravitational Memory, EMS Supertranslations and Soft Theorems, JHEP01 (2016) 086 [arXiv:1411.5745] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Pasterski, A. Strominger and A. Zhiboedov, New Gravitational Memories, JHEP12 (2016) 053 [arXiv:1502.06120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    P. Mao and X. Wu, More on gravitational memory, JHEP05 (2019) 058 [arXiv:1812.07168] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    H. Godazgar, M. Godazgar and C.N. Pope, Subleading EMS charges and fake news near null infinity, JHEP01 (2019) 143 [arXiv:1809.09076] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    H. Godazgar, M. Godazgar and C.N. Pope, New dual gravitational charges, Phys. Rev.D 99 (2019) 024013 [arXiv:1812.01641] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  28. [28]
    H. Godazgar, M. Godazgar and C.N. Pope, Tower of subleading dual EMS charges, JHEP03 (2019) 057 [arXiv:1812.06935] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    U. Kol and M. Porrati, Properties of Dual Supertranslation Charges in Asymptotically Flat Spacetimes, Phys. Rev.D 100 (2019) 046019 [arXiv:1907.00990] [INSPIRE].ADSGoogle Scholar
  30. [30]
    H. Godazgar, M. Godazgar and C.N. Pope, Dual gravitational charges and soft theorems, arXiv:1908.01164 [INSPIRE].
  31. [31]
    H. Godazgar, M. Godazgar and C.N. Pope, Taub-NUT from the Dirac monopole, arXiv:1908.05962 [INSPIRE].
  32. [32]
    M.G.J. van der Burg, Gravitational waves in general relativity. 10, Asymptotic expansions for the Einstein-Maxwell field, Proc. Roy. Soc. Land.A 310 (1969) 221.Google Scholar
  33. [33]
    L. Bieri, P. Chen and S.-T. Yau, Null Asymptotics of Solutions of the Einstein-Maxwell Equations in General Relativity and Gravitational Radiation, Adv. Theor. Math. Phys.15 (2011) 1085 [arXiv:1011.2267] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  34. [34]
    K. Tanabe, N. Tanahashi and T. Shiromizu, On asymptotic structure at null infinity in five dimensions, J. Math. Phys.51 (2010) 062502 [arXiv:0909.0426] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    K. Tanabe, S. Kinoshita and T. Shiromizu, Asymptotic flatness at null infinity in arbitrary dimensions, Phys. Rev.D 84 (2011) 044055 [arXiv:1104.0303] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M.J. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys.B 459 (1996) 125 [hep-th/9508094] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically fiat space-times, Proc. Roy. Soc. Land.A 270 (1962) 103 [INSPIRE].
  38. [38]
    G. Barnich, P.-H. Lambert and P. Mao, Three-dimensional asymptotically fiat Einstein-Maxwell theory, Class. Quant. Grav.32 (2015) 245001 [arXiv:1503.00856] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A.I. Janis and E.T. Newman, Structure of Gravitational Sources, J. Math. Phys.6 (1965) 902 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    G. Barnich and P.-H. Lambert, Einstein- Yang-Mills theory: Asymptotic symmetries, Phys. Rev.D 88 (2013) 103006 [arXiv:1310.2698] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Ashtekar, J. Bicak and B.G. Schmidt, Behavior of Einstein-Rosen waves at null infinity, Phys. Rev.D 55 (1997) 687 [gr-qc/9608041] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    A. Ashtekar, J. Bicak and B.G. Schmidt, Asymptotic structure of symmetry reduced general relativity, Phys. Rev.D 55 (1997) 669 [gr-qc/9608042] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Joint Quantum Studies and Department of Physics, School of ScienceTianjin UniversityTianjinChina
  2. 2.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations