Advertisement

Journal of High Energy Physics

, 2018:130 | Cite as

Two-loop massless QCD corrections to the g + g → H + H four-point amplitude

  • Pulak BanerjeeEmail author
  • Sophia Borowka
  • Prasanna K. Dhani
  • Thomas Gehrmann
  • V. Ravindran
Open Access
Regular Article - Theoretical Physics

Abstract

We compute the two-loop massless QCD corrections to the four-point amplitude g + gH + H resulting from effective operator insertions that describe the interaction of a Higgs boson with gluons in the infinite top quark mass limit. This amplitude is an essential ingredient to the third-order QCD corrections to Higgs boson pair production. We have implemented our results in a numerical code that can be used for further phenomenological studies.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    C. Englert et al., Precision Measurements of Higgs Couplings: Implications for New Physics Scales, J. Phys. G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE].
  4. [4]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].
  5. [5]
    A. Djouadi, W. Kilian, M.M. Mühlleitner and P.M. Zerwas, Testing Higgs selfcouplings at e + e linear colliders, Eur. Phys. J. C 10 (1999) 27 [hep-ph/9903229] [INSPIRE].
  6. [6]
    A. Djouadi, W. Kilian, M.M. Mühlleitner and P.M. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].
  7. [7]
    M.M. Mühlleitner, Higgs particles in the standard model and supersymmetric theories, Ph.D. Thesis, Hamburg University, Hamburg Germany (2000) [hep-ph/0008127] [INSPIRE].
  8. [8]
    E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].
  9. [9]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  10. [10]
    J. Baglio, A. Djouadi, R. Gröber, M.M. Mühlleitner, J. Quevillon and M. Spira, The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-Pair Production and Measurement of the Triscalar Coupling at LHC (8, 14), Phys. Lett. B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE].
  12. [12]
    M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the \( b\overline{b}{W}^{+}{W}^{-} \) channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].
  14. [14]
    D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard model Higgs boson pair production in the \( \left(b\overline{b}\right)\left(b\overline{b}\right) \) final state, JHEP 08 (2014) 030 [arXiv:1404.7139] [INSPIRE].
  15. [15]
    J.K. Behr, D. Bortoletto, J.A. Frost, N.P. Hartland, C. Issever and J. Rojo, Boosting Higgs pair production in the \( b\overline{b}b\overline{b} \) final state with multivariate techniques, Eur. Phys. J. C 76 (2016) 386 [arXiv:1512.08928] [INSPIRE].
  16. [16]
    R. Gröber, M.M. Mühlleitner and M. Spira, Higgs Pair Production at NLO QCD for CP-violating Higgs Sectors, Nucl. Phys. B 925 (2017) 1 [arXiv:1705.05314] [INSPIRE].
  17. [17]
    J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, Nucl. Phys. B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE].
  18. [18]
    R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].
  19. [19]
    F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP 11 (2014) 079 [arXiv:1408.6542] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G. Degrassi, P.P. Giardino and R. Gröber, On the two-loop virtual QCD corrections to Higgs boson pair production in the Standard Model, Eur. Phys. J. C 76 (2016) 411 [arXiv:1603.00385] [INSPIRE].
  21. [21]
    R. Gröber, A. Maier and T. Rauh, Reconstruction of top-quark mass effects in Higgs pair production and other gluon-fusion processes, JHEP 03 (2018) 020 [arXiv:1709.07799] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Bonciani, G. Degrassi, P.P. Giardino and R. Gröber, Analytical Method for Next-to-Leading-Order QCD Corrections to Double-Higgs Production, Phys. Rev. Lett. 121 (2018) 162003 [arXiv:1806.11564] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Borowka et al., Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence, Phys. Rev. Lett. 117 (2016) 012001 [Erratum ibid. 117 (2016) 079901] [arXiv:1604.06447] [INSPIRE].
  24. [24]
    S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP 10 (2016) 107 [arXiv:1608.04798] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    D. de Florian and J. Mazzitelli, Two-loop virtual corrections to Higgs pair production, Phys. Lett. B 724 (2013) 306 [arXiv:1305.5206] [INSPIRE].
  26. [26]
    J. Grigo, J. Hoff and M. Steinhauser, Higgs boson pair production: top quark mass effects at NLO and NNLO, Nucl. Phys. B 900 (2015) 412 [arXiv:1508.00909] [INSPIRE].
  27. [27]
    D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Grigo, K. Melnikov and M. Steinhauser, Virtual corrections to Higgs boson pair production in the large top quark mass limit, Nucl. Phys. B 888 (2014) 17 [arXiv:1408.2422] [INSPIRE].
  29. [29]
    Q. Li, Q.-S. Yan and X. Zhao, Higgs Pair Production: Improved Description by Matrix Element Matching, Phys. Rev. D 89 (2014) 033015 [arXiv:1312.3830] [INSPIRE].
  30. [30]
    P. Maierhöfer and A. Papaefstathiou, Higgs Boson pair production merged to one jet, JHEP 03 (2014) 126 [arXiv:1401.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. de Florian and J. Mazzitelli, Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC, JHEP 09 (2015) 053 [arXiv:1505.07122] [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    M. Grazzini et al., Higgs boson pair production at NNLO with top quark mass effects, JHEP 05 (2018) 059 [arXiv:1803.02463] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    D.Y. Shao, C.S. Li, H.T. Li and J. Wang, Threshold resummation effects in Higgs boson pair production at the LHC, JHEP 07 (2013) 169 [arXiv:1301.1245] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].
  35. [35]
    M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].
  36. [36]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order α s4, Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [INSPIRE].
  37. [37]
    M. Spira, Effective Multi-Higgs Couplings to Gluons, JHEP 10 (2016) 026 [arXiv:1607.05548] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Gerlach, F. Herren and M. Steinhauser, Wilson coefficients for Higgs boson production and decoupling relations to \( \left(\mathcal{O}{\alpha}_s^4\right) \), arXiv:1809.06787 [INSPIRE].
  39. [39]
    P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    M.F. Zoller, On the renormalization of operator products: the scalar gluonic case, JHEP 04 (2016) 165 [arXiv:1601.08094] [INSPIRE].ADSGoogle Scholar
  42. [42]
    N.K. Nielsen, Gauge Invariance and Broken Conformal Symmetry, Nucl. Phys. B 97 (1975) 527 [INSPIRE].
  43. [43]
    V.P. Spiridonov and K.G. Chetyrkin, Nonleading mass corrections and renormalization of the operators mψψ and G μν2, Sov. J. Nucl. Phys. 47 (1988) 522 [INSPIRE].
  44. [44]
    A.L. Kataev, N.V. Krasnikov and A.A. Pivovarov, Two Loop Calculations for the Propagators of Gluonic Currents, Nucl. Phys. B 198 (1982) 508 [Erratum ibid. B 490 (1997) 505] [hep-ph/9612326] [INSPIRE].
  45. [45]
    S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
  46. [46]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].
  47. [47]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].
  48. [48]
    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  51. [51]
    A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE].
  52. [52]
    T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \( q\overline{q}\to VV \) , JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].
  53. [53]
    F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311 [arXiv:1405.2219] [INSPIRE].
  54. [54]
    T. Gehrmann et al., W + W Production at Hadron Colliders in Next to Next to Leading Order QCD, Phys. Rev. Lett. 113 (2014) 212001 [arXiv:1408.5243] [INSPIRE].
  55. [55]
    F. Caola, J.M. Henn, K. Melnikov, A.V. Smirnov and V.A. Smirnov, Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in quark-antiquark collisions, JHEP 11 (2014) 041 [arXiv:1408.6409] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for \( q{\overline{q}}^{\prime}\to {V}_1{V}_2\to\ 4 \) leptons, JHEP 09 (2015) 128 [arXiv:1503.04812] [INSPIRE].
  57. [57]
    A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for ggV 1 V 2 → 4 leptons, JHEP 06 (2015) 197 [arXiv:1503.08835] [INSPIRE].
  58. [58]
    F. Caola, J.M. Henn, K. Melnikov, A.V. Smirnov and V.A. Smirnov, Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in gluon fusion, JHEP 06 (2015) 129 [arXiv:1503.08759] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].
  60. [60]
    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].
  61. [61]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
  62. [62]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
  63. [63]
    C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP 07 (2004) 046 [hep-ph/0404258] [INSPIRE].
  64. [64]
    A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    C. Studerus, Reduze-Feynman Integral Reduction in C++, Comput. Phys. Commun. 181 (2010) 1293 [arXiv:0912.2546] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
  67. [67]
    T. Gehrmann, L. Tancredi and E. Weihs, Two-loop master integrals for \( q\overline{q}\to VV \) : the planar topologies, JHEP 08 (2013) 070 [arXiv:1306.6344] [INSPIRE].
  68. [68]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    B. Mistlberger, Higgs boson production at hadron colliders at N 3 LO in QCD, JHEP 05 (2018) 028 [arXiv:1802.00833] [INSPIRE].
  70. [70]
    J. Currie, T. Gehrmann, E.W.N. Glover, A. Huss, J. Niehues and A. Vogt, N 3 LO corrections to jet production in deep inelastic scattering using the Projection-to-Born method, JHEP 05 (2018) 209 [arXiv:1803.09973] [INSPIRE].
  71. [71]
    L. Cieri, X. Chen, T. Gehrmann, E.W.N. Glover and A. Huss, Higgs boson production at the LHC using the q T subtraction formalism at N 3 LO QCD, arXiv:1807.11501 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Pulak Banerjee
    • 1
    Email author
  • Sophia Borowka
    • 2
  • Prasanna K. Dhani
    • 1
  • Thomas Gehrmann
    • 3
  • V. Ravindran
    • 1
  1. 1.The Institute of Mathematical Sciences, HBNIChennaiIndia
  2. 2.Theoretical Physics DepartmentCERNGenevaSwitzerland
  3. 3.Physik-InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations