Advertisement

Journal of High Energy Physics

, 2018:71 | Cite as

Traversable wormholes as quantum channels: exploring CFT entanglement structure and channel capacity in holography

  • Ning Bao
  • Aidan Chatwin-Davies
  • Jason Pollack
  • Grant N. Remmen
Open Access
Regular Article - Theoretical Physics
  • 25 Downloads

Abstract

We interpret the traversable wormhole in AdS/CFT in the context of quantum information theory. In particular, we investigate its properties as both a quantum channel and entanglement witness. We define protocols that allow either the bounding of the channel’s entanglement capacity or the determination of aspects of the entanglement structure between the two boundary CFTs. Such protocols and connections allow for the use of quantum channel techniques in the study of gravitational physics and vice versa. More generally, our results suggest a purely quantum information-theoretic criterion for recognizing when the product of two boundary theories has a classical bulk interpretation.

Keywords

AdS-CFT Correspondence Black Holes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. ’t Hooft, Dimensional reduction in quantum gravity, in Conference on highlights of particle and condensed matter physics (SALAMFEST), Conf. Proc. C 930308 (1993) 284 [gr-qc/9310026] [INSPIRE].
  2. [2]
    L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Bousso, The holographic principle, Rev. Mod. Phys. 74 (2002) 825 [hep-th/0203101] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  6. [6]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [INSPIRE].
  9. [9]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].
  11. [11]
    K. Jensen and A. Karch, Holographic dual of an Einstein-Podolsky-Rosen pair has a wormhole, Phys. Rev. Lett. 111 (2013) 211602 [arXiv:1307.1132] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Sonner, Holographic Schwinger effect and the geometry of entanglement, Phys. Rev. Lett. 111 (2013) 211603 [arXiv:1307.6850] [INSPIRE].
  13. [13]
    N. Bao, J. Pollack and G.N. Remmen, Splitting spacetime and cloning qubits: linking no-go theorems across the ER=EPR duality, Fortsch. Phys. 63 (2015) 705 [arXiv:1506.08203] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    N. Bao, J. Pollack and G.N. Remmen, Wormhole and entanglement (non-)detection in the ER=EPR correspondence, JHEP 11 (2015) 126 [arXiv:1509.05426] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    G. Remmen, N. Bao and J. Pollack, Entanglement conservation, ER=EPR and a new classical area theorem for wormholes, JHEP 07 (2016) 048 [arXiv:1604.08217] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M.S. Morris, K.S. Thorne and U. Yurtsever, Wormholes, time machines and the weak energy condition, Phys. Rev. Lett. 61 (1988) 1446 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P. Gao, D.L. Jafferis and A. Wall, Traversable wormholes via a double trace deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].
  19. [19]
    A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Nielsen and I. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, U.K., (2000).Google Scholar
  21. [21]
    J. Preskill, Quantum Shannon theory, arXiv:1604.07450 [INSPIRE].
  22. [22]
    J. Preskill, Foundations II: measurement and evolution, unpublished notes, (2015).
  23. [23]
    C. Shannon, The mathematical theory of communication, University of Illinois Press, Chicago, IL, U.S.A., (1949).Google Scholar
  24. [24]
    C. Bennett, A. Harrow, D. Leung and J. Smolin, On the capacities of bipartite Hamiltonians and unitary gates, IEEE Trans. Inform. Theory 49 (2003) 1895 [quant-ph/0205057].
  25. [25]
    P.M. Hayden, M. Horodecki and B.M. Terhal, The asymptotic entanglement cost of preparing a quantum state, J. Phys. A 34 (2001) 6891.Google Scholar
  26. [26]
    M.B. Plenio and S. Virmani, An introduction to entanglement measures, Quant. Inf . Comput. 7 (2007) 1 [quant-ph/0504163] [INSPIRE].
  27. [27]
    C.H. Bennett, D.P. DiVincenzo, J.A. Smolin and W.K. Wootters, Mixed state entanglement and quantum error correction, Phys. Rev. A 54 (1996) 3824 [quant-ph/9604024] [INSPIRE].
  28. [28]
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70 (1993) 1895 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    T. Dray and G. ’t Hooft, The gravitational shock wave of a massless particle, Nucl. Phys. B 253 (1985) 173 [INSPIRE].
  30. [30]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    S. Carlip, The (2 + 1)-dimensional black hole, Class. Quant. Grav. 12 (1995) 2853 [gr-qc/9506079] [INSPIRE].
  33. [33]
    D.L. Jafferis, Teleportation through wormholes and quantum mechanics from the inside, in preparation.Google Scholar
  34. [34]
    E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
  35. [35]
    T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT, JHEP 01 (2008) 019 [hep-th/0602106] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    V. Giovannetti, R. García-Patrón, N.J. Cerf and A.S. Holevo, Ultimate classical communication rates of quantum optical channels, Nature Photonics 8 (2014) 796 [arXiv:1312.6225].
  37. [37]
    M.M. Wolf, D. Pérez-García and G. Giedke, Quantum capacities of bosonic channels, Phys. Rev. Lett. 98 (2007) 130501 [quant-ph/0606132].
  38. [38]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].
  39. [39]
    D. Kabat and G. Lifschytz, Finite N and the failure of bulk locality: black holes in AdS/CFT, JHEP 09 (2014) 077 [arXiv:1405.6394] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    L. Gyongyosi, S. Imre and H.V. Nguyen, A survey on quantum channel capacities, Commun. Surveys Tuts. 20 (2018) 1149 [arXiv:1801.02019].CrossRefGoogle Scholar
  41. [41]
    M. Horodecki, P. Horodecki and R. Horodecki, On the necessary and sufficient conditions for separability of mixed quantum states, Phys. Lett. A 223 (1996) 1 [quant-ph/9605038] [INSPIRE].
  42. [42]
    A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77 (1996) 1413 [quant-ph/9604005] [INSPIRE].
  43. [43]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic complexity equals bulk action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS 2 gravity, arXiv:1707.02325 [INSPIRE].
  45. [45]
    J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
  46. [46]
    J. Maldacena, A. Milekhin and F. Popov, Traversable wormholes in four dimensions, arXiv:1807.04726 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Ning Bao
    • 1
    • 2
  • Aidan Chatwin-Davies
    • 3
    • 5
  • Jason Pollack
    • 4
  • Grant N. Remmen
    • 1
    • 2
  1. 1.Center for Theoretical Physics and Department of PhysicsUniversity of CaliforniaBerkeleyU.S.A.
  2. 2.Lawrence Berkeley National LaboratoryBerkeleyU.S.A.
  3. 3.Walter Burke Institute for Theoretical Physics, California Institute of TechnologyPasadenaU.S.A.
  4. 4.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  5. 5.KU Leuven, Institute for Theoretical PhysicsLeuvenBelgium

Personalised recommendations