Journal of High Energy Physics

, 2018:70 | Cite as

Does the SYK model have a spin glass phase?

  • Guy Gur-Ari
  • Raghu Mahajan
  • Abolhassan Vaezi
Open Access
Regular Article - Theoretical Physics


We argue that the Sachdev-Ye-Kitaev model has no spin glass phase, based on calculations involving both the nearly-conformal limit and the strongly-coupled Schwarzian limit of the model. This conclusion is supported by numerical computations of eigenvalue statistics with up to 46 Majorana fermions. In addition, we find numerically that the distribution of the ground state energy is Gaussian.


Field Theories in Lower Dimensions Random Systems 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  2. [2]
    O. Parcollet and A. Georges, Non-Fermi-liquid regime of a doped Mott insulator, Phys. Rev. B 59 (1999) 5341.Google Scholar
  3. [3]
    A. Kitaev, A simple model of quantum holography (part 1), talk at KITP,, University of California, Santa Barbara, U.S.A., 7 April 2015.
  4. [4]
    A. Kitaev, A simple model of quantum holography (part 2), talk at KITP,, University of California, Santa Barbara, U.S.A., 27 May 2015.
  5. [5]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
  6. [6]
    A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 05 (2018) 183 [arXiv:1711.08467] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  8. [8]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
  9. [9]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].
  10. [10]
    G. Mandal, P. Nayak and S.R. Wadia, Coadjoint orbit action of Virasoro group and two-dimensional quantum gravity dual to SYK/tensor models, JHEP 11 (2017) 046 [arXiv:1702.04266] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    K. Jensen, Chaos in AdS 2 holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
  12. [12]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].
  14. [14]
    Y. Gu, A. Lucas and X.-L. Qi, Energy diffusion and the butterfly effect in inhomogeneous Sachdev-Ye-Kitaev chains, SciPost Phys. 2 (2017) 018 [arXiv:1702.08462] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y. Huang and Y. Gu, Eigenstate entanglement in the Sachdev-Ye-Kitaev model, arXiv:1709.09160 [INSPIRE].
  16. [16]
    Y. Gu, A. Lucas and X.-L. Qi, Spread of entanglement in a Sachdev-Ye-Kitaev chain, JHEP 09 (2017) 120 [arXiv:1708.00871] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    D. Chowdhury, Y. Werman, E. Berg and T. Senthil, Translationally invariant non-Fermi liquid metals with critical Fermi-surfaces: solvable models, Phys. Rev. X 8 (2018) 031024 [arXiv:1801.06178] [INSPIRE].
  18. [18]
    A. Eberlein, V. Kasper, S. Sachdev and J. Steinberg, Quantum quench of the Sachdev-Ye-Kitaev model, Phys. Rev. B 96 (2017) 205123 [arXiv:1706.07803] [INSPIRE].
  19. [19]
    R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: the Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].
  20. [20]
    A. Georges, O. Parcollet and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B 63 (2001) 134406.Google Scholar
  21. [21]
    L. Arrachea and M.J. Rozenberg, Infinite-range quantum random Heisenberg magnet, Phys. Rev. B 65 (2002) 224430 [cond-mat/0203537].
  22. [22]
    F. Denef, TASI lectures on complex structures, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2010). String theory and its applications: from meV to the Planck scale, Boulder, CO, U.S.A., 1-25 June 2010, World Scientific, Singapore, (2011), pg. 407 [arXiv:1104.0254] [INSPIRE].
  23. [23]
    D. Anninos and F. Denef, Cosmic clustering, JHEP 06 (2016) 181 [arXiv:1111.6061] [INSPIRE].
  24. [24]
    D. Anninos, T. Anous, F. Denef, G. Konstantinidis and E. Shaghoulian, Supergoop dynamics, JHEP 03 (2013) 081 [arXiv:1205.1060] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].
  26. [26]
    T. Guhr, A. Müller-Groeling and H.A. Weidenmüller, Random matrix theories in quantum physics: common concepts, Proc. Int. Sch. Phys. Fermi 138 (1998) 405 [INSPIRE].Google Scholar
  27. [27]
    A.J. Bray and M.A. Moore, Replica theory of quantum spin glasses, J. Phys. C 13 (1980) L655.Google Scholar
  28. [28]
    D. Stanford and E. Witten, Fermionic localization of the Schwarzian theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].
  29. [29]
    D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].
  30. [30]
    D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys. B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE].
  31. [31]
    T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the conformal bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    T.G. Mertens, The Schwarzian theory — origins, JHEP 05 (2018) 036 [arXiv:1801.09605] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    Z. Yang, The quantum gravity dynamics of near extremal black holes, arXiv:1809.08647 [INSPIRE].
  34. [34]
    A. Blommaert, T.G. Mertens and H. Verschelde, The Schwarzian theory — a Wilson line perspective, arXiv:1806.07765 [INSPIRE].
  35. [35]
    H.T. Lam, T.G. Mertens, G.J. Turiaci and H. Verlinde, Shockwave S-matrix from Schwarzian quantum mechanics, arXiv:1804.09834 [INSPIRE].
  36. [36]
    A.M. Garcıa-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].
  37. [37]
    J.S. Cotler et al., Black holes and random matrices, JHEP 05 (2017) 118 [Erratum ibid. 09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
  38. [38]
    P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].
  39. [39]
    Y.-Z. You, A.W.W. Ludwig and C. Xu, Sachdev-Ye-Kitaev model and thermalization on the boundary of many-body localized fermionic symmetry protected topological states, Phys. Rev. B 95 (2017) 115150 [arXiv:1602.06964] [INSPIRE].
  40. [40]
    M.J. Bowick and É. Brézin, Universal scaling of the tail of the density of eigenvalues in random matrix models, Phys. Lett. B 268 (1991) 21 [INSPIRE].
  41. [41]
    P.J. Forrester, The spectrum edge of random matrix ensembles, Nucl. Phys. B 402 (1993) 709 [INSPIRE].
  42. [42]
    C.A. Tracy and H. Widom, Level spacing distributions and the Airy kernel, Commun. Math. Phys. 159 (1994) 151 [hep-th/9211141] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    A.M. García-García and J.J.M. Verbaarschot, Analytical spectral density of the Sachdev-Ye-Kitaev model at finite N , Phys. Rev. D 96 (2017) 066012 [arXiv:1701.06593] [INSPIRE].
  44. [44]
    C.A. Tracy and H. Widom, Distribution functions for largest eigenvalues and their applications, math-ph/0210034.
  45. [45]
    C.A. Tracy and H. Widom, The distributions of random matrix theory and their applications, in New trends in mathematical physics, Springer, Dordrecht, The Netherlands, (2009), pg. 753.Google Scholar
  46. [46]
    J.K. Cullum and R.A. Willoughby, Lanczos algorithms for large symmetric eigenvalue computations. Volume 1: theory, in Applied Mathematics 41, SIAM, U.S.A., (2002).Google Scholar
  47. [47]
    J. Miller and D.A. Huse, Zero-temperature critical behavior of the infinite-range quantum Ising spin glass, Phys. Rev. Lett. 70 (1993) 3147.ADSCrossRefGoogle Scholar
  48. [48]
    D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Phys. Rev. Lett. 35 (1975) 1792 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Parisi, The order parameter for spin glasses: a function on the interval 0-1, J. Phys. A 13 (1980) 1101 [INSPIRE].
  50. [50]
    M. Mezard, G. Parisi and M. Virasoro, Spin glass theory and beyond, in Lecture Notes in Physics Series 9, World Scientific, Singapore, (1986).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Guy Gur-Ari
    • 1
    • 3
    • 4
  • Raghu Mahajan
    • 1
    • 2
  • Abolhassan Vaezi
    • 3
  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  2. 2.Department of PhysicsPrinceton UniversityPrincetonU.S.A.
  3. 3.Department of PhysicsStanford UniversityStanfordU.S.A.
  4. 4.Google LLCMenlo ParkU.S.A.

Personalised recommendations