Journal of High Energy Physics

, 2018:67 | Cite as

Rescuing massive photons from the Swampland

  • Nathaniel Craig
  • Isabel Garcia Garcia
Open Access
Regular Article - Theoretical Physics


Stringent Swampland conjectures aimed at effective theories containing massive abelian vectors have recently been proposed [15], with striking phenomenological implications. In this article, we show how effective theories that parametrically violate the proposed conjectures can be UV-completed into theories that satisfy them. The UV-completion is accessible through both the Stückelberg and Higgs mechanisms, with all dimensionless parameters taking \( \mathcal{O}(1) \) values from the UV perspective. These constructions feature an IR limit containing a light vector that is parametrically separated from any other massive states, and from any cut-off scale mandated by quantum gravity consistency requirements. Moreover, the cut-off-to-vector-mass ratio remains parametrically large even in the decoupling limit in which all other massive states (including any scalar excitations) become arbitrarily heavy. We discuss how apparently strong constraints imposed by the proposed conjectures on phenomenologically interesting models, including specific production mechanisms of dark photon dark matter, are thereby circumvented.


Effective Field Theories Gauge Symmetry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C. Vafa, The String landscape and the swampland, hep-th/0509212 [INSPIRE].
  2. [2]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  3. [3]
    A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  4. [4]
    H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].
  5. [5]
    T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland and the Missing Corner, PoS(TASI2017)015 [arXiv:1711.00864] [INSPIRE].
  6. [6]
    M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].
  8. [8]
    R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].
  9. [9]
    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
  10. [10]
    B. Heidenreich, M. Reece and T. Rudelius, Sharpening the Weak Gravity Conjecture with Dimensional Reduction, JHEP 02 (2016) 140 [arXiv:1509.06374] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture, JHEP 08 (2017) 025 [arXiv:1606.08437] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. Montero, G. Shiu and P. Soler, The Weak Gravity Conjecture in three dimensions, JHEP 10 (2016)159 [arXiv:1606.08438] [INSPIRE].
  13. [13]
    S. Andriolo, D. Junghans, T. Noumi and G. Shiu, A Tower Weak Gravity Conjecture from Infrared Consistency, Fortsch. Phys. 66 (2018) 1800020 [arXiv:1802.04287] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  14. [14]
    B. Heidenreich, M. Reece and T. Rudelius, The Weak Gravity Conjecture and Emergence from an Ultraviolet Cutoff, Eur. Phys. J. C 78 (2018) 337 [arXiv:1712.01868] [INSPIRE].
  15. [15]
    M. Reece, Photon Masses in the Landscape and the Swampland, arXiv:1808.09966 [INSPIRE].
  16. [16]
    M.J. Bowick, S.B. Giddings, J.A. Harvey, G.T. Horowitz and A. Strominger, Axionic Black Holes and a Bohm-Aharonov Effect for Strings, Phys. Rev. Lett. 61 (1988) 2823 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Hebecker and P. Soler, The Weak Gravity Conjecture and the Axionic Black Hole Paradox, JHEP 09 (2017) 036 [arXiv:1702.06130] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    P.W. Graham, J. Mardon and S. Rajendran, Vector Dark Matter from Inflationary Fluctuations, Phys. Rev. D 93 (2016) 103520 [arXiv:1504.02102] [INSPIRE].
  19. [19]
    K. Choi and S.H. Im, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP 01 (2016) 149 [arXiv:1511.00132] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev. D 93 (2016) 085007 [arXiv:1511.01827] [INSPIRE].
  21. [21]
    P. Saraswat, Weak gravity conjecture and effective field theory, Phys. Rev. D 95 (2017) 025013 [arXiv:1608.06951] [INSPIRE].
  22. [22]
    G.F. Giudice and M. McCullough, A Clockwork Theory, JHEP 02 (2017) 036 [arXiv:1610.07962] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    H.B. Nielsen and P. Olesen, Vortex Line Models for Dual Strings, Nucl. Phys. B 61 (1973) 45 [INSPIRE].
  24. [24]
    J. Preskill, Vortices and monopoles, in Proceedings of Les Houches 44th Summer School of Theoretical Physics: Architecture of Fundamental Interactions at Short Distances, Les Houches France (1985), pg. 235.Google Scholar
  25. [25]
    C. Cheung and G.N. Remmen, Naturalness and the Weak Gravity Conjecture, Phys. Rev. Lett. 113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].
  26. [26]
    B. Heidenreich, M. Reece and T. Rudelius, Weak Gravity Strongly Constrains Large-Field Axion Inflation, JHEP 12 (2015) 108 [arXiv:1506.03447] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  27. [27]
    L.E. Ibáñez and M. Montero, A Note on the WGC, Effective Field Theory and Clockwork within String Theory, JHEP 02 (2018) 057 [arXiv:1709.02392] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    A. Arvanitaki, N. Craig, S. Dimopoulos, S. Dubovsky and J. March-Russell, String Photini at the LHC, Phys. Rev. D 81 (2010) 075018 [arXiv:0909.5440] [INSPIRE].
  29. [29]
    A.E. Nelson and J. Scholtz, Dark Light, Dark Matter and the Misalignment Mechanism, Phys. Rev. D 84 (2011) 103501 [arXiv:1105.2812] [INSPIRE].
  30. [30]
    P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, WISPy Cold Dark Matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    P. Fox, A. Pierce and S.D. Thomas, Probing a QCD string axion with precision cosmological measurements, hep-th/0409059 [INSPIRE].
  32. [32]
    S. Chaudhuri, P.W. Graham, K. Irwin, J. Mardon, S. Rajendran and Y. Zhao, Radio for hidden-photon dark matter detection, Phys. Rev. D 92 (2015) 075012 [arXiv:1411.7382] [INSPIRE].
  33. [33]
    A.S. Goldhaber and M.M. Nieto, Photon and Graviton Mass Limits, Rev. Mod. Phys. 82 (2010)939 [arXiv:0809.1003] [INSPIRE].
  34. [34]
    X.-F. Wu et al., Constraints on the Photon Mass with Fast Radio Bursts, Astrophys. J. 822 (2016) L15 [arXiv:1602.07835] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    L. Bonetti, J. Ellis, N.E. Mavromatos, A.S. Sakharov, E.K.G. Sarkisyan-Grinbaum and A.D. A.M. Spallicci, Photon Mass Limits from Fast Radio Bursts, Phys. Lett. B 757 (2016) 548 [arXiv:1602.09135] [INSPIRE].
  36. [36]
    L. Bonetti, J. Ellis, N.E. Mavromatos, A.S. Sakharov, E.K. Sarkisyan-Grinbaum and A.D. A.M. Spallicci, FRB 121102 Casts New Light on the Photon Mass, Phys. Lett. B 768 (2017) 326 [arXiv:1701.03097] [INSPIRE].
  37. [37]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].
  38. [38]
    H. Vogel and J. Redondo, Dark Radiation constraints on minicharged particles in models with a hidden photon, JCAP 02 (2014) 029 [arXiv:1311.2600] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  39. [39]
    ATLAS collaboration, Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 052008 [arXiv:1808.02380] [INSPIRE].
  40. [40]
    N. Craig, I. Garcia Garcia and D. Sutherland, Disassembling the Clockwork Mechanism, JHEP 10 (2017) 018 [arXiv:1704.07831] [INSPIRE].MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  2. 2.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.

Personalised recommendations