Advertisement

Journal of High Energy Physics

, 2018:65 | Cite as

Radiation of scalar modes and the classical double copy

  • Mariana Carrillo González
  • Riccardo Penco
  • Mark Trodden
Open Access
Regular Article - Theoretical Physics
  • 8 Downloads

Abstract

The double copy procedure relates gauge and gravity theories through color-kinematics replacements, and holds for both scattering amplitudes and in classical contexts. Moreover, it has been shown that there is a web of theories whose scattering amplitudes are related through operations that exchange color and kinematic factors. In this paper, we generalize and extend this procedure by showing that the classical perturbative double copy of pions corresponds to special Galileons. We consider point-particles coupled to the relevant scalar fields, and find the leading and next to leading order radiation amplitudes. By considering couplings motivated by those that would arise from extracting the longitudinal modes of the gauge and gravity theories, we are able to map the non-linear sigma model radiation to that of the special Galileon. We also construct the single copy by mapping the bi-adjoint scalar radiation to the non-linear sigma model radiation through generalized color-kinematics replacements.

Keywords

Global Symmetries Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
  2. [2]
    Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the Square of Gauge Theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].
  3. [3]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
  4. [4]
    C.-H. Shen, Gravitational Radiation from Color-Kinematics Duality, arXiv:1806.07388 [INSPIRE].
  5. [5]
    R. Monteiro, D. O’Connell and C.D. White, Black holes and the double copy, JHEP 12 (2014) 056 [arXiv:1410.0239] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Luna, R. Monteiro, D. O’Connell and C.D. White, The classical double copy for Taub-NUT spacetime, Phys. Lett. B 750 (2015) 272 [arXiv:1507.01869] [INSPIRE].
  7. [7]
    A. Luna, R. Monteiro, I. Nicholson, D. O’Connell and C.D. White, The double copy: Bremsstrahlung and accelerating black holes, JHEP 06 (2016) 023 [arXiv:1603.05737] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A.K. Ridgway and M.B. Wise, Static Spherically Symmetric Kerr-Schild Metrics and Implications for the Classical Double Copy, Phys. Rev. D 94 (2016) 044023 [arXiv:1512.02243] [INSPIRE].
  9. [9]
    M. Carrillo-González, R. Penco and M. Trodden, The classical double copy in maximally symmetric spacetimes, JHEP 04 (2018) 028 [arXiv:1711.01296] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    N. Bahjat-Abbas, A. Luna and C.D. White, The Kerr-Schild double copy in curved spacetime, JHEP 12 (2017) 004 [arXiv:1710.01953] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    K. Lee, Kerr-Schild Double Field Theory and Classical Double Copy, JHEP 10 (2018) 027 [arXiv:1807.08443] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    A. Ilderton, Screw-symmetric gravitational waves: a double copy of the vortex, Phys. Lett. B 782 (2018) 22 [arXiv:1804.07290] [INSPIRE].
  13. [13]
    D.S. Berman, E. Chacón, A. Luna and C.D. White, The self-dual classical double copy and the Eguchi-Hanson instanton, arXiv:1809.04063 [INSPIRE].
  14. [14]
    R. Saotome and R. Akhoury, Relationship Between Gravity and Gauge Scattering in the High Energy Limit, JHEP 01 (2013) 123 [arXiv:1210.8111] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    D. Neill and I.Z. Rothstein, Classical Space-Times from the S Matrix, Nucl. Phys. B 877 (2013) 177 [arXiv:1304.7263] [INSPIRE].
  16. [16]
    A. Luna et al., Perturbative spacetimes from Yang-Mills theory, JHEP 04 (2017) 069 [arXiv:1611.07508] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  17. [17]
    W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color charges, Phys. Rev. D 95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].
  18. [18]
    W.D. Goldberger, S.G. Prabhu and J.O. Thompson, Classical gluon and graviton radiation from the bi-adjoint scalar double copy, Phys. Rev. D 96 (2017) 065009 [arXiv:1705.09263] [INSPIRE].
  19. [19]
    W.D. Goldberger and A.K. Ridgway, Bound states and the classical double copy, Phys. Rev. D 97 (2018) 085019 [arXiv:1711.09493] [INSPIRE].
  20. [20]
    W.D. Goldberger, J. Li and S.G. Prabhu, Spinning particles, axion radiation and the classical double copy, Phys. Rev. D 97 (2018) 105018 [arXiv:1712.09250] [INSPIRE].
  21. [21]
    A. Luna, I. Nicholson, D. O’Connell and C.D. White, Inelastic Black Hole Scattering from Charged Scalar Amplitudes, JHEP 03 (2018) 044 [arXiv:1711.03901] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    D. Chester, Radiative double copy for Einstein-Yang-Mills theory, Phys. Rev. D 97 (2018) 084025 [arXiv:1712.08684] [INSPIRE].
  23. [23]
    J. Plefka, J. Steinhoff and W. Wormsbecher, Effective action of dilaton gravity as the classical double copy of Yang-Mills theory, arXiv:1807.09859 [INSPIRE].
  24. [24]
    A. Anastasiou, L. Borsten, M.J. Duff, L.J. Hughes and S. Nagy, Yang-Mills origin of gravitational symmetries, Phys. Rev. Lett. 113 (2014) 231606 [arXiv:1408.4434] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    A. Anastasiou, L. Borsten, M.J. Duff, A. Marrani, S. Nagy and M. Zoccali, Are all supergravity theories Yang-Mills squared?, Nucl. Phys. B 934 (2018) 606 [arXiv:1707.03234] [INSPIRE].
  26. [26]
    L. Borsten and M.J. Duff, Gravity as the square of Yang-Mills?, Phys. Scripta 90 (2015) 108012 [arXiv:1602.08267] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    G. Cardoso, S. Nagy and S. Nampuri, Multi-centered \( \mathcal{N}=2 \) BPS black holes: a double copy description, JHEP 04 (2017) 037 [arXiv:1611.04409] [INSPIRE].
  28. [28]
    G.L. Cardoso, S. Nagy and S. Nampuri, A double copy for \( \mathcal{N}=2 \) supergravity: a linearised tale told on-shell, JHEP 10 (2016) 127 [arXiv:1609.05022] [INSPIRE].
  29. [29]
    Y.-Z. Chu, More On Cosmological Gravitational Waves And Their Memories, Class. Quant. Grav. 34 (2017) 194001 [arXiv:1611.00018] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    S. Mizera and B. Skrzypek, Perturbiner Methods for Effective Field Theories and the Double Copy, JHEP 10 (2018) 018 [arXiv:1809.02096] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    C. Cheung, G.N. Remmen, C.-H. Shen and C. Wen, Pions as Gluons in Higher Dimensions, JHEP 04 (2018) 129 [arXiv:1709.04932] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev. D 92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].
  35. [35]
    J. Novotny, Geometry of special Galileons, Phys. Rev. D 95 (2017) 065019 [arXiv:1612.01738] [INSPIRE].
  36. [36]
    K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    C. de Rham, Massive Gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].CrossRefzbMATHGoogle Scholar
  38. [38]
    C. Cheung and C.-H. Shen, Symmetry for Flavor-Kinematics Duality from an Action, Phys. Rev. Lett. 118 (2017) 121601 [arXiv:1612.00868] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    C. Cheung, C.-H. Shen and C. Wen, Unifying Relations for Scattering Amplitudes, JHEP 02 (2018) 095 [arXiv:1705.03025] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    K. Zhou and B. Feng, Note on differential operators, CHY integrands and unifying relations for amplitudes, JHEP 09 (2018) 160 [arXiv:1808.06835] [INSPIRE].CrossRefzbMATHGoogle Scholar
  41. [41]
    M. Bollmann and L. Ferro, Transmuting CHY formulae, arXiv:1808.07451 [INSPIRE].
  42. [42]
    H. Elvang and Y.-t. Huang, Scattering Amplitudes in Gauge Theory and Gravity, Cambridge University Press (2015) [INSPIRE].
  43. [43]
    C. Cheung, TASI Lectures on Scattering Amplitudes, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Anticipating the Next Discoveries in Particle Physics (TASI 2016), Boulder, CO, U.S.A., June 6-July 1, 2016, pp. 571-623 (2018) [DOI: https://doi.org/10.1142/9789813233348 0008] [arXiv:1708.03872] [INSPIRE].
  44. [44]
    Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, Preliminary: Lecture notes on the duality between color and kinematics and its applications, in Amplitudes 2018 Summer School, 11-15 June 2018 [http://qmap.ucdavis.edu/events/amplitudes-summer-school].
  45. [45]
    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Semi-abelian Z-theory: N LSM + \( \phi \) 3 from the open string, JHEP 08 (2017) 135 [arXiv:1612.06446] [INSPIRE].
  46. [46]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Explicit Formulae for Yang-Mills-Einstein Amplitudes from the Double Copy, JHEP 07 (2017) 002 [arXiv:1703.00421] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    D. Nandan, J. Plefka, O. Schlotterer and C. Wen, Einstein-Yang-Mills from pure Yang-Mills amplitudes, JHEP 10 (2016) 070 [arXiv:1607.05701] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    W.D. Goldberger, Les Houches lectures on effective field theories and gravitational radiation, in Les Houches Summer School — Session 86: Particle Physics and Cosmology: The Fabric of Spacetime, Les Houches, France, July 31-August 25, 2006 (2007) [hep-ph/0701129] [INSPIRE].
  49. [49]
    S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press (1996) [INSPIRE].
  50. [50]
    K. Kampf, J. Novotny and J. Trnka, Recursion relations for tree-level amplitudes in the SU(N) nonlinear σ-model, Phys. Rev. D 87 (2013) 081701 [arXiv:1212.5224] [INSPIRE].
  51. [51]
    K. Kampf, J. Novotny and J. Trnka, Tree-level Amplitudes in the Nonlinear σ-model, JHEP 05 (2013) 032 [arXiv:1304.3048] [INSPIRE].CrossRefzbMATHGoogle Scholar
  52. [52]
    G. Chen and Y.-J. Du, Amplitude Relations in Non-linear σ-model, JHEP 01 (2014) 061 [arXiv:1311.1133] [INSPIRE].CrossRefzbMATHGoogle Scholar
  53. [53]
    Y.-J. Du and C.-H. Fu, Explicit BCJ numerators of nonlinear simga model, JHEP 09 (2016) 174 [arXiv:1606.05846] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    H. Elvang, M. Hadjiantonis, C.R.T. Jones and S. Paranjape, Soft Bootstrap and Supersymmetry, arXiv:1806.06079 [INSPIRE].
  55. [55]
    A. Padilla, D. Stefanyszyn and T. Wilson, Probing Scalar Effective Field Theories with the Soft Limits of Scattering Amplitudes, JHEP 04 (2017) 015 [arXiv:1612.04283] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    L. Rodina, Scattering Amplitudes from Soft Theorems and Infrared Behavior, arXiv:1807.09738 [INSPIRE].
  57. [57]
    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Abelian Z-theory: NLSM amplitudes and α’-corrections from the open string, JHEP 06 (2017) 093 [arXiv:1608.02569] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Center for Particle Cosmology, Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaU.S.A.

Personalised recommendations