Advertisement

Journal of High Energy Physics

, 2018:62 | Cite as

Analytical soft SUSY spectrum in mirage-type mediation scenarios

  • Fei Wang
Open Access
Regular Article - Theoretical Physics
  • 13 Downloads

Abstract

We derive explicitly the soft SUSY breaking parameters at arbitrary low energy scale in the (deflected) mirage type mediation scenarios with possible gauge or Yukawa mediation contributions. Based on the Wilsonian effective action after integrating out the messengers, we obtain analytically the boundary value (at the GUT scale) dependencies of the effective wavefunctions and gauge kinetic terms. Note that the messenger scale dependencies of the effective wavefunctions and gauge kinetic terms had already been discussed in GMSB. The RGE boundary value dependencies, which is a special feature in (deflected) mirage type mediation, is the key new ingredients in this study. The appearance of ‘mirage’ unification scale in mirage mediation is proved rigorously with our analytical results. We also discuss briefly the new features in deflected mirage mediation scenario in the case the deflection comes purely from the Kahler potential and the case with messenger-matter interactions.

Keywords

Supersymmetry Breaking Supersymmetric Effective Theories Compactification and String Models Supersymmetric Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].
  2. [2]
    CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].
  3. [3]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  4. [4]
    C.P. Burgess, R. Kallosh and F. Quevedo, de Sitter string vacua from supersymmetric D terms, JHEP 10 (2003) 056 [hep-th/0309187] [INSPIRE].
  5. [5]
    A. Saltman and E. Silverstein, The Scaling of the no scale potential and de Sitter model building, JHEP 11 (2004) 066 [hep-th/0402135] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].
  7. [7]
    K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski and S. Pokorski, Stability of flux compactifications and the pattern of supersymmetry breaking, JHEP 11 (2004) 076 [hep-th/0411066] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].
  9. [9]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].
  10. [10]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].
  11. [11]
    K. Choi, K.S. Jeong and K.-i. Okumura, Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models, JHEP 09 (2005) 039 [hep-ph/0504037] [INSPIRE].
  12. [12]
    I. Jack and D.R.T. Jones, Fayet-Iliopoulos D terms and anomaly mediated supersymmetry breaking, Phys. Lett. B 482 (2000) 167 [hep-ph/0003081] [INSPIRE].
  13. [13]
    E. Katz, Y. Shadmi and Y. Shirman, Heavy thresholds, slepton masses and the mu term in anomaly mediated supersymmetry breaking, JHEP 08 (1999) 015 [hep-ph/9906296] [INSPIRE].
  14. [14]
    N. Arkani-Hamed, D.E. Kaplan, H. Murayama and Y. Nomura, Viable ultraviolet insensitive supersymmetry breaking, JHEP 02 (2001) 041 [hep-ph/0012103] [INSPIRE].
  15. [15]
    R. Sundrum, ’Gaugomaly’ mediated SUSY breaking and conformal sequestering, Phys. Rev. D 71 (2005) 085003 [hep-th/0406012] [INSPIRE].
  16. [16]
    K. Hsieh and M.A. Luty, Mixed gauge and anomaly mediation from new physics at 10-TeV, JHEP 06 (2007) 062 [hep-ph/0604256] [INSPIRE].
  17. [17]
    Y. Cai and M.A. Luty, Minimal Gaugomaly Mediation, JHEP 12 (2010) 037 [arXiv:1008.2024] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    T. Kobayashi, Y. Nakai and M. Sakai, (Extra)Ordinary Gauge/Anomaly Mediation, JHEP 06 (2011) 039 [arXiv:1103.4912] [INSPIRE].
  19. [19]
    A. Pomarol and R. Rattazzi, Sparticle masses from the superconformal anomaly, JHEP 05 (1999)013 [hep-ph/9903448] [INSPIRE].
  20. [20]
    R. Rattazzi, A. Strumia and J.D. Wells, Phenomenology of deflected anomaly mediation, Nucl. Phys. B 576 (2000) 3 [hep-ph/9912390] [INSPIRE].
  21. [21]
    N. Okada, Positively deflected anomaly mediation, Phys. Rev. D 65 (2002) 115009 [hep-ph/0202219] [INSPIRE].
  22. [22]
    N. Okada and H.M. Tran, Positively deflected anomaly mediation in the light of the Higgs boson discovery, Phys. Rev. D 87 (2013) 035024 [arXiv:1212.1866] [INSPIRE].
  23. [23]
    F. Wang, W. Wang, J.M. Yang and Y. Zhang, Heavy colored SUSY partners from deflected anomaly mediation, JHEP 07 (2015) 138 [arXiv:1505.02785] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. Wang, J.M. Yang and Y. Zhang, Radiative natural SUSY spectrum from deflected AMSB scenario with messenger-matter interactions, JHEP 04 (2016) 177 [arXiv:1602.01699] [INSPIRE].ADSGoogle Scholar
  25. [25]
    F. Wang, L. Wu, J.M. Yang and M. Zhang, 750 GeV diphoton resonance, 125 GeV Higgs and muon g − 2 anomaly in deflected anomaly mediation SUSY breaking scenarios, Phys. Lett. B 759 (2016)191 [arXiv:1512.06715] [INSPIRE].
  26. [26]
    L.L. Everett, I.-W. Kim, P. Ouyang and K.M. Zurek, Deflected Mirage Mediation: A Framework for Generalized Supersymmetry Breaking, Phys. Rev. Lett. 101 (2008) 101803 [arXiv:0804.0592] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    L.L. Everett, I.-W. Kim, P. Ouyang and K.M. Zurek, Moduli Stabilization and Supersymmetry Breaking in Deflected Mirage Mediation, JHEP 08 (2008) 102 [arXiv:0806.2330] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    L.L. Everett, T. Garon, B.L. Kaufman and B.D. Nelson, Mirage Models Confront the LHC: III. Deflected Mirage Mediation, Phys. Rev. D 93 (2016) 055031 [arXiv:1510.05692] [INSPIRE].
  29. [29]
    B. Altunkaynak, B.D. Nelson, L.L. Everett, I.-W. Kim and Y. Rao, Phenomenological Implications of Deflected Mirage Mediation: Comparison with Mirage Mediation, JHEP 05 (2010)054 [arXiv:1001.5261] [INSPIRE].
  30. [30]
    B. Kaufman and B.D. Nelson, Mirage Models Confront the LHC: II. Flux-Stabilized Type IIB String Theory, Phys. Rev. D 89 (2014) 085029 [arXiv:1312.6621] [INSPIRE].
  31. [31]
    H. Abe and J. Kawamura, The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation, JHEP 07 (2014) 077 [arXiv:1405.0779] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    L.L. Everett, T. Garon, B.L. Kaufman and B.D. Nelson, Mirage Models Confront the LHC: III. Deflected Mirage Mediation, Phys. Rev. D 93 (2016) 055031 [arXiv:1510.05692] [INSPIRE].
  33. [33]
    K. Huitu, P.N. Pandita and P. Tiitola, Renormalization group invariants and sum rules in the deflected mirage mediation supersymmetry breaking, Phys. Rev. D 92 (2015) 075037 [arXiv:1505.03455] [INSPIRE].
  34. [34]
    V. Barger, L.L. Everett and T.S. Garon, Electroweak Naturalness and Deflected Mirage Mediation, Phys. Rev. D 93 (2016) 075024 [arXiv:1512.05011] [INSPIRE].
  35. [35]
    H. Baer, V. Barger, H. Serce and X. Tata, Natural generalized mirage mediation, Phys. Rev. D 94 (2016) 115017 [arXiv:1610.06205] [INSPIRE].
  36. [36]
    T. Kobayashi, H. Makino, K.-i. Okumura, T. Shimomura and T. Takahashi, TeV scale mirage mediation in NMSSM, JHEP 01 (2013) 081 [arXiv:1204.3561] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    K. Hagimoto, T. Kobayashi, H. Makino, K.-i. Okumura and T. Shimomura, Phenomenology of NMSSM in TeV scale mirage mediation, JHEP 02 (2016) 089 [arXiv:1509.05327] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Pierce and J. Thaler, Prospects for Mirage Mediation, JHEP 09 (2006) 017 [hep-ph/0604192] [INSPIRE].
  39. [39]
    M. Asano and T. Higaki, Natural supersymmetric spectrum in mirage mediation, Phys. Rev. D 86 (2012) 035020 [arXiv:1204.0508] [INSPIRE].
  40. [40]
    X. Kang Du, G.-L. Liu, F. Wang, W. Wang, J.M. Yang and Y. Zhang, NMSSM from generalized deflected mirage mediation, arXiv:1804.07335 [INSPIRE].
  41. [41]
    H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata, Radiative natural SUSY with a 125 GeV Higgs boson, Phys. Rev. Lett. 109 (2012) 161802 [arXiv:1207.3343] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Mustafayev and X. Tata, Supersymmetry, Naturalness and Light Higgsinos, Indian J. Phys. 88 (2014) 991 [arXiv:1404.1386] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    K.J. Bae, H. Baer, N. Nagata and H. Serce, Prospects for Higgs coupling measurements in SUSY with radiatively-driven naturalness, Phys. Rev. D 92 (2015) 035006 [arXiv:1505.03541] [INSPIRE].
  44. [44]
    X. Tata, Supersymmetry: Aspirations and Prospects, Phys. Scripta 90 (2015) 108001 [arXiv:1506.07151] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Kitano, G.D. Kribs and H. Murayama, Electroweak symmetry breaking via UV insensitive anomaly mediation, Phys. Rev. D 70 (2004) 035001 [hep-ph/0402215] [INSPIRE].
  46. [46]
    X. Ning and F. Wang, Solving the muon g − 2 anomaly within the NMSSM from generalized deflected AMSB, JHEP 08 (2017) 089 [arXiv:1704.05079] [INSPIRE].
  47. [47]
    K. Choi, K.S. Jeong, S. Nakamura, K.-I. Okumura and M. Yamaguchi, Sparticle masses in deflected mirage mediation, JHEP 04 (2009) 107 [arXiv:0901.0052] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B. Altunkaynak, B.D. Nelson, L.L. Everett, I.-W. Kim and Y. Rao, Phenomenological Implications of Deflected Mirage Mediation: Comparison with Mirage Mediation, JHEP 05 (2010)054 [arXiv:1001.5261] [INSPIRE].
  49. [49]
    G.F. Giudice and R. Rattazzi, Extracting supersymmetry breaking effects from wave function renormalization, Nucl. Phys. B 511 (1998) 25 [hep-ph/9706540] [INSPIRE].
  50. [50]
    Z. Chacko and E. Ponton, Yukawa deflected gauge mediation, Phys. Rev. D 66 (2002) 095004 [hep-ph/0112190] [INSPIRE].
  51. [51]
    J.A. Evans and D. Shih, Surveying Extended GMSB Models with m h = 125 GeV, JHEP 08 (2013)093 [arXiv:1303.0228] [INSPIRE].
  52. [52]
    M. Dine, W. Fischler and M. Srednicki, Supersymmetric Technicolor, Nucl. Phys. B 189 (1981)575 [INSPIRE].
  53. [53]
    S. Dimopoulos and S. Raby, Supercolor, Nucl. Phys. B 192 (1981) 353 [INSPIRE].
  54. [54]
    M. Dine and W. Fischler, A Phenomenological Model of Particle Physics Based on Supersymmetry, Phys. Lett. B 110 (1982) 227 [INSPIRE].
  55. [55]
    M. Dine and A.E. Nelson, Dynamical supersymmetry breaking at low-energies, Phys. Rev. D 48 (1993) 1277 [hep-ph/9303230] [INSPIRE].
  56. [56]
    M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [INSPIRE].
  57. [57]
    M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [INSPIRE].
  58. [58]
    G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].
  59. [59]
    A.E. Nelson and N.J. Weiner, Extended anomaly mediation and new physics at 10-TeV, hep-ph/0210288 [INSPIRE].
  60. [60]
    X. Du and F. Wang, NMSSM From Alternative Deflection in Generalized Deflected Anomaly Mediated SUSY Breaking, Eur. Phys. J. C 78 (2018) 431 [arXiv:1710.06105] [INSPIRE].
  61. [61]
    F. Wang, Deflected anomaly mediated SUSY breaking scenario with general messenger-matter interactions, Phys. Lett. B 751 (2015) 402 [arXiv:1508.01299] [INSPIRE].
  62. [62]
    X. Ning and F. Wang, Solving the muon g − 2 anomaly within the NMSSM from generalized deflected AMSB, JHEP 08 (2017) 089 [arXiv:1704.05079] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    F. Wang, W. Wang and J.M. Yang, Solving the muon g − 2 anomaly in deflected anomaly mediated SUSY breaking with messenger-matter interactions, Phys. Rev. D 96 (2017) 075025 [arXiv:1703.10894] [INSPIRE].
  64. [64]
    B. Kaufman and B.D. Nelson, Mirage Models Confront the LHC: II. Flux-Stabilized Type IIB String Theory, Phys. Rev. D 89 (2014) 085029 [arXiv:1312.6621] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and EngineeringZhengzhou UniversityZhengzhouP.R. China
  2. 2.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingP.R. China

Personalised recommendations