Advertisement

Journal of High Energy Physics

, 2017:202 | Cite as

What measurements of neutrino neutral current events can reveal

  • Raj Gandhi
  • Boris Kayser
  • Suprabh Prakash
  • Samiran Roy
Open Access
Regular Article - Theoretical Physics
  • 79 Downloads

Abstract

We show that neutral current (NC) measurements at neutrino detectors can play a valuable role in the search for new physics. Such measurements have certain intrinsic features and advantages that can fruitfully be combined with the usual well-studied charged lepton detection channels in order to probe the presence of new interactions or new light states. In addition to the fact that NC events are immune to uncertainties in standard model neutrino mixing and mass parameters, they can have small matter effects and superior rates since all three flavours participate. We also show, as a general feature, that NC measurements provide access to different combinations of CP phases and mixing parameters compared to CC measurements at both long and short baseline experiments. Using the Deep Underground Neutrino Experiment (DUNE) as an illustrative setting, we demonstrate the capability of NC measurements to break degeneracies arising in CC measurements, allowing us, in principle, to distinguish between new physics that violates three flavour unitarity and that which does not. Finally, we show that NC measurements can enable us to restrict new physics parameters that are not easily constrained by CC measurements.

Keywords

Beyond Standard Model CP violation Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Cao et al., Roadmap for the international, accelerator-based neutrino programme, arXiv:1704.08181 [INSPIRE].
  2. [2]
    A. Sousa, Experimental Neutrino Physics Overview, talk at WIN2017, https://indico.fnal.gov/contributionDisplay.py?contribId=101&confId=9942.
  3. [3]
    W. Winter, Neutrino physics (Theory), talk at WIN2017, https://indico.fnal.gov/contributionDisplay.py?contribId=76&confId=9942.
  4. [4]
    A. Esmaili, F. Halzen and O.L.G. Peres, Exploring ντ − νs mixing with cascade events in DeepCore, JCAP 07 (2013) 048 [arXiv:1303.3294] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Chatterjee, P. Mehta, D. Choudhury and R. Gandhi, Testing nonstandard neutrino matter interactions in atmospheric neutrino propagation, Phys. Rev. D 93 (2016) 093017 [arXiv:1409.8472] [INSPIRE].
  6. [6]
    N. Klop and A. Palazzo, Imprints of CP-violation induced by sterile neutrinos in T2K data, Phys. Rev. D 91 (2015) 073017 [arXiv:1412.7524] [INSPIRE].
  7. [7]
    S. Choubey, A. Ghosh, T. Ohlsson and D. Tiwari, Neutrino Physics with Non-Standard Interactions at INO, JHEP 12 (2015) 126 [arXiv:1507.02211] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Blennow, S. Choubey, T. Ohlsson and S.K. Raut, Exploring Source and Detector Non-Standard Neutrino Interactions at ESSνSB, JHEP 09 (2015) 096 [arXiv:1507.02868] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.M. Berryman, A. de Gouvêa, K.J. Kelly and A. Kobach, Sterile neutrino at the Deep Underground Neutrino Experiment, Phys. Rev. D 92 (2015) 073012 [arXiv:1507.03986] [INSPIRE].
  10. [10]
    S. Parke and M. Ross-Lonergan, Unitarity and the three flavor neutrino mixing matrix, Phys. Rev. D 93 (2016) 113009 [arXiv:1508.05095] [INSPIRE].ADSGoogle Scholar
  11. [11]
    R. Gandhi, B. Kayser, M. Masud and S. Prakash, The impact of sterile neutrinos on CP measurements at long baselines, JHEP 11 (2015) 039 [arXiv:1508.06275] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. de Gouvêa and K.J. Kelly, Non-standard Neutrino Interactions at DUNE, Nucl. Phys. B 908 (2016) 318 [arXiv:1511.05562] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Coloma, Non-Standard Interactions in propagation at the Deep Underground Neutrino Experiment, JHEP 03 (2016) 016 [arXiv:1511.06357] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D.V. Forero and P. Huber, Hints for leptonic CP-violation or New Physics?, Phys. Rev. Lett. 117 (2016) 031801 [arXiv:1601.03736] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Liao and D. Marfatia, Impact of nonstandard interactions on sterile neutrino searches at IceCube, Phys. Rev. Lett. 117 (2016) 071802 [arXiv:1602.08766] [INSPIRE].
  16. [16]
    J.M. Berryman, A. de Gouvêa, K.J. Kelly, O.L.G. Peres and Z. Tabrizi, Large, Extra Dimensions at the Deep Underground Neutrino Experiment, Phys. Rev. D 94 (2016) 033006 [arXiv:1603.00018] [INSPIRE].
  17. [17]
    M. Masud and P. Mehta, Nonstandard interactions spoiling the CP-violation sensitivity at DUNE and other long baseline experiments, Phys. Rev. D 94 (2016) 013014 [arXiv:1603.01380] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Physics Reach of DUNE with a Light Sterile Neutrino, JHEP 09 (2016) 016 [arXiv:1603.03759] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Choubey and D. Pramanik, Constraints on Sterile Neutrino Oscillations using DUNE Near Detector, Phys. Lett. B 764 (2017) 135 [arXiv:1604.04731] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    O.G. Miranda, M. Tortola and J.W.F. Valle, New ambiguity in probing CP-violation in neutrino oscillations, Phys. Rev. Lett. 117 (2016) 061804 [arXiv:1604.05690] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P. Coloma and T. Schwetz, Generalized mass ordering degeneracy in neutrino oscillation experiments, Phys. Rev. D 94 (2016) 055005 [Erratum ibid. D 95 (2017) 079903] [arXiv:1604.05772] [INSPIRE].
  22. [22]
    S.-F. Ge, P. Pasquini, M. Tortola and J.W.F. Valle, Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing, Phys. Rev. D 95 (2017) 033005 [arXiv:1605.01670] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Octant of θ 23 in danger with a light sterile neutrino, Phys. Rev. Lett. 118 (2017) 031804 [arXiv:1605.04299] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Masud and P. Mehta, Nonstandard interactions and resolving the ordering of neutrino masses at DUNE and other long baseline experiments, Phys. Rev. D 94 (2016) 053007 [arXiv:1606.05662] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Blennow, S. Choubey, T. Ohlsson, D. Pramanik and S.K. Raut, A combined study of source, detector and matter non-standard neutrino interactions at DUNE, JHEP 08 (2016) 090 [arXiv:1606.08851] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Degeneracy between θ 23 octant and neutrino non-standard interactions at DUNE, Phys. Lett. B 762 (2016) 64 [arXiv:1607.01745] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D. Dutta, R. Gandhi, B. Kayser, M. Masud and S. Prakash, Capabilities of long-baseline experiments in the presence of a sterile neutrino, JHEP 11 (2016) 122 [arXiv:1607.02152] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Verma and S. Bhardwaj, Probing Non-unitary CP Violation effects in Neutrino Oscillation Experiments, arXiv:1609.06412 [INSPIRE].
  29. [29]
    D. Dutta, P. Ghoshal and S. Roy, Effect of Non Unitarity on Neutrino Mass Hierarchy determination at DUNE, NOνA and T2K, Nucl. Phys. B 920 (2017) 385 [arXiv:1609.07094] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Blennow, P. Coloma, E. Fernandez-Martinez, J. Hernandez-Garcia and J. Lopez-Pavon, Non-Unitarity, sterile neutrinos and Non-Standard neutrino Interactions, JHEP 04 (2017) 153 [arXiv:1609.08637] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Dutta, P. Ghoshal and S.K. Sehrawat, Octant of θ 23 at long baseline neutrino experiments in the light of Non Unitary Leptonic mixing, Phys. Rev. D 95 (2017) 095007 [arXiv:1610.07203] [INSPIRE].
  32. [32]
    F.J. Escrihuela, D.V. Forero, O.G. Miranda, M. Tórtola and J.W.F. Valle, Probing CP-violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study, New J. Phys. 19 (2017) 093005 [arXiv:1612.07377] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K.N. Deepthi, S. Goswami and N. Nath, Can nonstandard interactions jeopardize the hierarchy sensitivity of DUNE?, Phys. Rev. D 96 (2017) 075023 [arXiv:1612.00784] [INSPIRE].
  34. [34]
    D. Cianci, A. Furmanski, G. Karagiorgi and M. Ross-Lonergan, Prospects of Light Sterile Neutrino Oscillation and CP-violation Searches at the Fermilab Short Baseline Neutrino Facility, Phys. Rev. D 96 (2017) 055001 [arXiv:1702.01758] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J. Rout, M. Masud and P. Mehta, Can we probe intrinsic CP and T violations and nonunitarity at long baseline accelerator experiments?, Phys. Rev. D 95 (2017) 075035 [arXiv:1702.02163] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S. Choubey, D. Dutta and D. Pramanik, Imprints of a light Sterile Neutrino at DUNE, T2HK and T2HKK, Phys. Rev. D 96 (2017) 056026 [arXiv:1704.07269] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Masud, M. Bishai and P. Mehta, Extricating New Physics Scenarios at DUNE with High Energy Beams, arXiv:1704.08650 [INSPIRE].
  38. [38]
    M. Ghosh, S. Gupta, Z.M. Matthews, P. Sharma and A.G. Williams, Study of parameter degeneracy and hierarchy sensitivity of NOνA in presence of sterile neutrino, Phys. Rev. D 96 (2017) 075018 [arXiv:1704.04771] [INSPIRE].
  39. [39]
    S. Choubey, S. Goswami and D. Pramanik, A Study of Invisible Neutrino Decay at DUNE and its Effects on θ 23 Measurement, arXiv:1705.05820 [INSPIRE].
  40. [40]
    P. Coloma and O.L.G. Peres, Visible neutrino decay at DUNE, arXiv:1705.03599 [INSPIRE].
  41. [41]
    P. Coloma, D.V. Forero and S.J. Parke, DUNE sensitivities to the mixing between sterile and tau neutrinos, arXiv:1707.05348 [INSPIRE].
  42. [42]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
  43. [43]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].
  44. [44]
    J. Kopp, Sterile neutrinos and non-standard neutrino interactions in GLoBES, November 2010, https://www.mpi-hd.mpg.de/personalhomes/globes/tools/snu-1.0.pdf.
  45. [45]
    J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and superbeam experiments, Phys. Rev. D 77 (2008) 013007 [arXiv:0708.0152] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Sorel, private correspondence (2017).Google Scholar
  47. [47]
    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1512.06148 [INSPIRE].
  48. [48]
    L. Camilleri, The Fermilab short-baseline neutrino program, AIP Conf. Proc. 1680 (2015) 020004 [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    LAr1-ND, ICARUS-WA104, MicroBooNE collaborations, M. Antonello et al., A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam, arXiv:1503.01520 [INSPIRE].
  50. [50]
    LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
  51. [51]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Unexplained Excess of Electron-Like Events From a 1-GeV Neutrino Beam, Phys. Rev. Lett. 102 (2009) 101802 [arXiv:0812.2243] [INSPIRE].
  52. [52]
    G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].
  53. [53]
    T.A. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].ADSGoogle Scholar
  54. [54]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Improved Search for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) Oscillations in the MiniBooNE Experiment, Phys. Rev. Lett. 110 (2013) 161801 [arXiv:1303.2588] [INSPIRE].
  55. [55]
    DUNE collaboration, T. Alion et al., Experiment Simulation Configurations Used in DUNE CDR, arXiv:1606.09550 [INSPIRE].
  56. [56]
    LBNE collaboration, C. Adams et al., The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe, arXiv:1307.7335 [INSPIRE].
  57. [57]
    V. De Romeri, E. Fernandez-Martinez and M. Sorel, Neutrino oscillations at DUNE with improved energy reconstruction, JHEP 09 (2016) 030 [arXiv:1607.00293] [INSPIRE].CrossRefGoogle Scholar
  58. [58]
    T.J. Carroll, New Constraints on Sterile Neutrinos with MINOS/MINOS+ and Daya Bay, arXiv:1705.05064 [INSPIRE].
  59. [59]
    MINOS, Daya Bay collaboration, P. Adamson et al., Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay and Bugey-3 Experiments, Phys. Rev. Lett. 117 (2016) 151801 [Addendum ibid. 117 (2016) 209901] [arXiv:1607.01177] [INSPIRE].
  60. [60]
    IceCube collaboration, M.G. Aartsen et al., Searches for Sterile Neutrinos with the IceCube Detector, Phys. Rev. Lett. 117 (2016) 071801 [arXiv:1605.01990] [INSPIRE].
  61. [61]
    Super-Kamiokande collaboration, K. Abe et al., Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 91 (2015) 052019 [arXiv:1410.2008] [INSPIRE].
  62. [62]
    MINOS collaboration, P. Adamson et al., Search for Sterile Neutrinos Mixing with Muon Neutrinos in MINOS, Phys. Rev. Lett. 117 (2016) 151803 [arXiv:1607.01176] [INSPIRE].
  63. [63]
    IceCube collaboration, M.G. Aartsen et al., Search for sterile neutrino mixing using three years of IceCube DeepCore data, Phys. Rev. D 95 (2017) 112002 [arXiv:1702.05160] [INSPIRE].
  64. [64]
    NOvA collaboration, P. Adamson et al., Search for active-sterile neutrino mixing using neutral-current interactions in NOvA, Phys. Rev. D 96 (2017) 072006 [arXiv:1706.04592] [INSPIRE].
  65. [65]
    J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile Neutrino Oscillations: The Global Picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G.H. Collin, C.A. Argüelles, J.M. Conrad and M.H. Shaevitz, First Constraints on the Complete Neutrino Mixing Matrix with a Sterile Neutrino, Phys. Rev. Lett. 117 (2016) 221801 [arXiv:1607.00011] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S. Gariazzo, C. Giunti, M. Laveder and Y.F. Li, Updated Global 3+1 Analysis of Short-BaseLine Neutrino Oscillations, JHEP 06 (2017) 135 [arXiv:1703.00860] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    R. Gandhi, P. Ghoshal, S. Goswami, P. Mehta and S.U. Sankar, Earth matter effects at very long baselines and the neutrino mass hierarchy, Phys. Rev. D 73 (2006) 053001 [hep-ph/0411252] [INSPIRE].
  69. [69]
    G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo and A.M. Rotunno, Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  70. [70]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Global Analyses of Neutrino Oscillation Experiments, Nucl. Phys. B 908 (2016) 199 [arXiv:1512.06856] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  71. [71]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  72. [72]
    T2K collaboration, K. Abe et al., Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of ν e interactions at the far detector, Phys. Rev. D 96 (2017) 092006 [arXiv:1707.01048] [INSPIRE].
  73. [73]
    NOvA collaboration, P. Adamson et al., First measurement of electron neutrino appearance in NOvA, Phys. Rev. Lett. 116 (2016) 151806 [arXiv:1601.05022] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Raj Gandhi
    • 1
  • Boris Kayser
    • 2
  • Suprabh Prakash
    • 3
  • Samiran Roy
    • 1
  1. 1.Harish-Chandra Research Institute, HBNIAllahabadIndia
  2. 2.Theoretical Physics Department, FermilabBataviaU.S.A.
  3. 3.Instituto de Física Gleb Wataghin — UNICAMPCampinasBrazil

Personalised recommendations