Advertisement

Journal of High Energy Physics

, 2017:193 | Cite as

Crossing symmetry in alpha space

  • Matthijs Hogervorst
  • Balt C. van Rees
Open Access
Regular Article - Theoretical Physics

Abstract

We initiate the study of the conformal bootstrap using Sturm-Liouville theory, specializing to four-point functions in one-dimensional CFTs. We do so by decomposing conformal correlators using a basis of eigenfunctions of the Casimir which are labeled by a complex number α. This leads to a systematic method for computing conformal block decompositions. Analyzing bootstrap equations in alpha space turns crossing symmetry into an eigenvalue problem for an integral operator K. The operator K is closely related to the Wilson transform, and some of its eigenfunctions can be found in closed form.

Keywords

Conformal Field Theory Field Theories in Lower Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B 49 (1972) 77 [Erratum ibid. B 53 (1973) 643] [INSPIRE].
  2. [2]
    S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [Sov. Phys. JETP 39 (1974) 9] [INSPIRE].
  4. [4]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D conformal field theories with global symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  8. [8]
    D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].ADSMATHGoogle Scholar
  10. [10]
    D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE convergence in conformal field theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. El-Showk and M.F. Paulos, Bootstrapping conformal field theories with the extremal functional method, Phys. Rev. Lett. 111 (2013) 241601 [arXiv:1211.2810] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Gliozzi, More constraining conformal bootstrap, Phys. Rev. Lett. 111 (2013) 161602 [arXiv:1307.3111] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite chiral symmetry in four dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].
  17. [17]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    L.F. Alday and A. Zhiboedov, Conformal bootstrap with slightly broken higher spin symmetry, JHEP 06 (2016) 091 [arXiv:1506.04659] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    T. Hartman, S. Jain and S. Kundu, Causality constraints in conformal field theory, JHEP 05 (2016) 099 [arXiv:1509.00014] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    H. Kim, P. Kravchuk and H. Ooguri, Reflections on conformal spectra, JHEP 04 (2016) 184 [arXiv:1510.08772] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S.M. Chester and S.S. Pufu, Towards bootstrapping QED 3, JHEP 08 (2016) 019 [arXiv:1601.03476] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Dey, A. Kaviraj and K. Sen, More on analytic bootstrap for O(N) models, JHEP 06 (2016) 136 [arXiv:1602.04928] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A proof of the conformal collider bounds, JHEP 06 (2016) 111 [arXiv:1603.03771] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision islands in the Ising and O(N) models, JHEP 08 (2016) 036 [arXiv:1603.04436] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    S. El-Showk and M.F. Paulos, Extremal bootstrapping: go with the flow, arXiv:1605.08087 [INSPIRE].
  26. [26]
    L.F. Alday, Large spin perturbation theory for conformal field theories, Phys. Rev. Lett. 119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D. Mazac, Analytic bounds and emergence of AdS 2 physics from the conformal bootstrap, JHEP 04 (2017) 146 [arXiv:1611.10060] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    D. Simmons-Duffin, The lightcone bootstrap and the spectrum of the 3D Ising CFT, JHEP 03 (2017) 086 [arXiv:1612.08471] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    S. Rychkov, EPFL lectures on conformal field theory in D ≥ 3 dimensions, SpringerBriefs Phys., Springer, Cham Switzerland, (2016) [arXiv:1601.05000] [INSPIRE].
  30. [30]
    J.D. Qualls, Lectures on conformal field theory, arXiv:1511.04074 [INSPIRE].
  31. [31]
    D. Simmons-Duffin, The conformal bootstrap, in New frontiers in fields and strings, World Scientific, Singapore, (2017) [arXiv:1602.07982] [INSPIRE].
  32. [32]
    G. Mack, D-independent representation of conformal field theories in D dimensions via transformation to auxiliary dual resonance models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].
  33. [33]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A natural language for AdS/CFT correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    A.L. Fitzpatrick and J. Kaplan, Analyticity and the holographic S-matrix, JHEP 10 (2012) 127 [arXiv:1111.6972] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A.L. Fitzpatrick and J. Kaplan, Unitarity and the holographic S-matrix, JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091 [arXiv:1209.4355] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    V. Gonçalves, J. Penedones and E. Trevisani, Factorization of Mellin amplitudes, JHEP 10 (2015) 040 [arXiv:1410.4185] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal bootstrap in Mellin space, Phys. Rev. Lett. 118 (2017) 081601 [arXiv:1609.00572] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal bootstrap, JHEP 05 (2017) 027 [arXiv:1611.08407] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    G.E. Andrews, R. Askey and R. Roy, Special functions, Cambridge University Press, Cambridge U.K., (1999).CrossRefMATHGoogle Scholar
  42. [42]
    R. Koekoek and R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, math.CA/9602214.
  43. [43]
    V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical derivation of vacuum operator product expansion in Euclidean conformal quantum field theory, Phys. Rev. D 13 (1976) 887 [INSPIRE].ADSGoogle Scholar
  44. [44]
    B. Ponsot and J. Teschner, Liouville bootstrap via harmonic analysis on a noncompact quantum group, hep-th/9911110 [INSPIRE].
  45. [45]
    B. Ponsot and J. Teschner, Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of \( {\mathcal{U}}_q\left(\mathrm{S}\mathrm{L}\left(2,R\right)\right) \), Commun. Math. Phys. 224 (2001) 613 [math/0007097] [INSPIRE].
  46. [46]
    L. Hadasz, M. Pawelkiewicz and V. Schomerus, Self-dual continuous series of representations for \( {\mathcal{U}}_q\left(\mathrm{S}\mathrm{L}(2)\right) \) and \( {\mathcal{U}}_q\left(osp\left(1\Big|2\right)\right) \), JHEP 10 (2014) 091 [arXiv:1305.4596] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    M. Pawelkiewicz, V. Schomerus and P. Suchanek, The universal Racah-Wigner symbol for \( {\mathcal{U}}_q\left(osp\left(1\Big|2\right)\right) \), JHEP 04 (2014) 079 [arXiv:1307.6866] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    I. Esterlis, A.L. Fitzpatrick and D. Ramirez, Closure of the operator product expansion in the non-unitary bootstrap, JHEP 11 (2016) 030 [arXiv:1606.07458] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    G.W. Moore and N. Seiberg, Classical and quantum conformal field theory, Commun. Math. Phys. 123 (1989) 177 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    G.W. Moore and N. Seiberg, Lectures on RCFT, in Physics, geometry and topology, Springer, Boston MA U.S.A., (1989).Google Scholar
  51. [51]
    L. Alvarez-Gaumé, G. Sierra and C. Gomez, Topics in conformal field theory, CERN-TH-5540-89, CERN, Geneva Switzerland, (1989).
  52. [52]
    A. Gadde, In search of conformal theories, arXiv:1702.07362 [INSPIRE].
  53. [53]
    D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3D Ising twist defect, JHEP 03 (2014) 100 [arXiv:1310.5078] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Billò, M. Caselle, D. Gaiotto, F. Gliozzi, M. Meineri and R. Pellegrini, Line defects in the 3D Ising model, JHEP 07 (2013) 055 [arXiv:1304.4110] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and interface CFTs from the conformal bootstrap, JHEP 05 (2015) 036 [arXiv:1502.07217] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  57. [57]
    L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    L.L. Littlejohn and A. Zettl, The Legendre equation and its self-adjoint operators, Electron. J. Diff. Equat. 2011 (2011) 1.MathSciNetMATHGoogle Scholar
  59. [59]
    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    K. Symanzik, On calculations in conformal invariant field theories, Lett. Nuovo Cim. 3 (1972) 734 [INSPIRE].CrossRefGoogle Scholar
  61. [61]
    M. Flensted-Jensen and T.H. Koornwinder, The convolution structure for Jacobi function expansions, Ark. Mat. 11 (1973) 245.MathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    M. Flensted-Jensen and T.H. Koornwinder, Jacobi functions: the addition formula and the positivity of the dual convolution structure, Ark. Mat. 17 (1979) 139.MathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    T.H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, in Special functions: group theoretical aspects and applications, Springer, Dordrecht The Netherlands, (1984), pg. 1.Google Scholar
  64. [64]
    T.H. Koornwinder, Special orthogonal polynomial systems mapped onto each other by the Fourier-Jacobi transform, in Polynômes Orthogonaux et Applications, Springer, Berlin Heidelberg Germany, (1985), pg. 174.Google Scholar
  65. [65]
    J.A. Wilson, Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 11 (1980) 690.MathSciNetCrossRefMATHGoogle Scholar
  66. [66]
    S. Rychkov and P. Yvernay, Remarks on the convergence properties of the conformal block expansion, Phys. Lett. B 753 (2016) 682 [arXiv:1510.08486] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  67. [67]
    W. Groenevelt, The Wilson function transform, Int. Math. Res. Not. 2003 (2003) 2779 [math.CA/0306424].
  68. [68]
    W. Groenevelt, Wilson function transforms related to Racah coefficients, Acta Appl. Math. 91 (2006) 133 [math.CA/0501511].
  69. [69]
    T. Regge, Symmetry properties of Racah’s coefficients, Nuovo Cim. 11 (1959) 116 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    Ya.A. Granovskiĭ and A.S. Zhedanov, Nature of the symmetry group of the 6j-symbol, Sov. Phys. JETP 67 (1988) 1982 [Zh. Eksp. Teor. Fiz. 94 (1988) 49].Google Scholar
  71. [71]
    P.P. Boalch, Regge and Okamoto symmetries, Commun. Math. Phys. 276 (2007) 117 [math.RT/0603398].
  72. [72]
    J. Fuchs and C. Schweigert, Symmetries, Lie algebras and representations, Cambridge University Press, Cambridge U.K., (2003) [INSPIRE].MATHGoogle Scholar
  73. [73]
    V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic analysis on the n-dimensional Lorentz group and its application to conformal quantum field theory, in Harmonic analysis: on the n-dimensional Lorentz group and its application to conformal quantum field theory, Lect. Notes Phys. 63 (1977) 1 [INSPIRE].
  74. [74]
    M. Lüscher and G. Mack, Global conformal invariance in quantum field theory, Commun. Math. Phys. 41 (1975) 203 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    L. Pukánszky, The Plancherel formula for the universal covering group of SL(R, 2), Math. Ann. 156 (1964) 96.MathSciNetCrossRefMATHGoogle Scholar
  76. [76]
    G. Mack, All unitary ray representations of the conformal group SU(2, 2) with positive energy, Commun. Math. Phys. 55 (1977) 1 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  77. [77]
    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  78. [78]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of superconformal symmetry in diverse dimensions, arXiv:1612.00809 [INSPIRE].
  79. [79]
    M. Isachenkov and V. Schomerus, Superintegrability of d-dimensional conformal blocks, Phys. Rev. Lett. 117 (2016) 071602 [arXiv:1602.01858] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.
  2. 2.Centre for Particle Theory & Department of Mathematical SciencesDurham UniversityDurhamU.K.

Personalised recommendations