Advertisement

Journal of High Energy Physics

, 2017:110 | Cite as

Double trace interfaces

  • Charles M. Melby-Thompson
  • Cornelius Schmidt-Colinet
Open Access
Regular Article - Theoretical Physics

Abstract

We introduce and study renormalization group interfaces between two holographic conformal theories which are related by deformation by a scalar double trace operator. At leading order in the 1/N expansion, we derive expressions for the two point correlation functions of the scalar, as well as the spectrum of operators living on the interface. We also compute the interface contribution to the sphere partition function, which in two dimensions gives the boundary g factor. Checks of our proposal include reproducing the g factor and some defect overlap coefficients of Gaiotto’s RG interfaces at large N , and the two-point correlation function whenever conformal perturbation theory is valid.

Keywords

AdS-CFT Correspondence Conformal and W Symmetry Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I. Brunner and D. Roggenkamp, Defects and bulk perturbations of boundary Landau-Ginzburg orbifolds, JHEP 04 (2008) 001 [arXiv:0712.0188] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    A. Konechny and C. Schmidt-Colinet, Entropy of conformal perturbation defects, J. Phys. A 47 (2014) 485401 [arXiv:1407.6444] [INSPIRE].MathSciNetMATHGoogle Scholar
  3. [3]
    I. Brunner and C. Schmidt-Colinet, Reflection and transmission of conformal perturbation defects, J. Phys. A 49 (2016) 195401 [arXiv:1508.04350] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  4. [4]
    F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and Interface CFTs from the Conformal Bootstrap, JHEP 05 (2015) 036 [arXiv:1502.07217] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    D. Gaiotto, Domain Walls for Two-Dimensional Renormalization Group Flows, JHEP 12 (2012) 103 [arXiv:1201.0767] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    T. Dimofte, D. Gaiotto and R. van der Veen, RG Domain Walls and Hybrid Triangulations, Adv. Theor. Math. Phys. 19 (2015) 137 [arXiv:1304.6721] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    D. Bak, M. Gutperle and S. Hirano, A dilatonic deformation of AdS 5 and its field theory dual, JHEP 05 (2003) 072 [hep-th/0304129] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Exact Half-BPS Flux Solutions in M-theory. I: Local Solutions, JHEP 08 (2008) 028 [arXiv:0806.0605] [INSPIRE].
  9. [9]
    E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Janus solutions in M-theory, JHEP 06 (2009) 018 [arXiv:0904.3313] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  10. [10]
    T. Nishioka and H. Tanaka, Lifshitz-like Janus Solutions, JHEP 02 (2011) 023 [arXiv:1010.6075] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  11. [11]
    D. Bak, M. Gutperle and R.A. Janik, Janus Black Holes, JHEP 10 (2011) 056 [arXiv:1109.2736] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    M. Chiodaroli, J. Estes and Y. Korovin, Holographic two-point functions for Janus interfaces in the D1/D5 CFT, JHEP 04 (2017) 145 [arXiv:1612.08916] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    N. Bobev, K. Pilch and N.P. Warner, Supersymmetric Janus Solutions in Four Dimensions, JHEP 06 (2014) 058 [arXiv:1311.4883] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P. Karndumri and K. Upathambhakul, Supersymmetric RG flows and Janus from type-II orbifold compactification, Eur. Phys. J. C 77 (2017) 455 [arXiv:1704.00538] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
  17. [17]
    I.N. Sneddon, Mixed Boundary Value Problems in Potential Theory, North Holland, (1966).Google Scholar
  18. [18]
    O. Aharony, O. DeWolfe, D.Z. Freedman and A. Karch, Defect conformal field theory and locally localized gravity, JHEP 07 (2003) 030 [hep-th/0303249] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  20. [20]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].
  22. [22]
    I. Affleck and A.W.W. Ludwig, Universal noninteger ‘ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    D. Bak, A. Gustavsson and S.-J. Rey, Conformal Janus on Euclidean Sphere, JHEP 12 (2016) 025 [arXiv:1605.00857] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    D.E. Diaz and H. Dorn, Partition functions and double-trace deformations in AdS/CFT, JHEP 05 (2007) 046 [hep-th/0702163] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    C.P. Herzog, K.-W. Huang and K. Jensen, Universal Entanglement and Boundary Geometry in Conformal Field Theory, JHEP 01 (2016) 162 [arXiv:1510.00021] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    D. Fursaev, Conformal anomalies of CFT’s with boundaries, JHEP 12 (2015) 112 [arXiv:1510.01427] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  27. [27]
    S.N. Solodukhin, Boundary terms of conformal anomaly, Phys. Lett. B 752 (2016) 131 [arXiv:1510.04566] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S. El-Showk and K. Papadodimas, Emergent Spacetime and Holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R. Jost, The General Theory of Quantized Fields, AMS, Providence, RI, U.S.A. (1965).Google Scholar
  30. [30]
    M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  31. [31]
    C. Ahn, The Large-N ’t Hooft Limit of Coset Minimal Models, JHEP 10 (2011) 125 [arXiv:1106.0351] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    C. Ahn, The Large-N ’t Hooft Limit of Kazama-Suzuki Model, JHEP 08 (2012) 047 [arXiv:1206.0054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    D. Roggenkamp and K. Wendland, Limits and degenerations of unitary conformal field theories, Commun. Math. Phys. 251 (2004) 589 [hep-th/0308143] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    I. Runkel and G.M.T. Watts, A nonrational CFT with c = 1 as a limit of minimal models, JHEP 09 (2001) 006 [hep-th/0107118] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M.R. Gaberdiel and P. Suchanek, Limits of Minimal Models and Continuous Orbifolds, JHEP 03 (2012) 104 [arXiv:1112.1708] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    S. Fredenhagen and C. Restuccia, The large level limit of Kazama-Suzuki models, JHEP 04 (2015) 015 [arXiv:1408.0416] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    M.R. Gaberdiel and R. Gopakumar, Higher Spins & Strings, JHEP 11 (2014) 044 [arXiv:1406.6103] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    D. Altschuler, M. Bauer and H. Saleur, Level rank duality in nonunitary coset theories, J. Phys. A 23 (1990) L789 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  39. [39]
    C. Ahn, D. Bernard and A. LeClair, Fractional Supersymmetries in Perturbed Coset CFTs and Integrable Soliton Theory, Nucl. Phys. B 346 (1990) 409 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    S. Giombi and I.R. Klebanov, One Loop Tests of Higher Spin AdS/CFT, JHEP 12 (2013) 068 [arXiv:1308.2337] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    C. Crnkovic, R. Paunov, G.M. Sotkov and M. Stanishkov, Fusions of Conformal Models, Nucl. Phys. B 336 (1990) 637 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    A. Recknagel, Permutation branes, JHEP 04 (2003) 041 [hep-th/0208119] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    H. Ishikawa, Boundary states in coset conformal field theories, Nucl. Phys. B 629 (2002) 209 [hep-th/0111230] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    T. Quella and V. Schomerus, Symmetry breaking boundary states and defect lines, JHEP 06 (2002) 028 [hep-th/0203161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    T. Quella, I. Runkel and G.M.T. Watts, Reflection and transmission for conformal defects, JHEP 04 (2007) 095 [hep-th/0611296] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer New York (1997), [https://doi.org/ 10.1007/978-1-4612-2256-9].
  48. [48]
    V.S. Dotsenko and V.A. Fateev, Conformal Algebra and Multipoint Correlation Functions in Two-Dimensional Statistical Models, Nucl. Phys. B 240 (1984) 312 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    C.-M. Chang and X. Yin, Correlators in W N Minimal Model Revisited, JHEP 10 (2012) 050 [arXiv:1112.5459] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFT d, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  51. [51]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal bootstrap, JHEP 05 (2017) 027 [arXiv:1611.08407] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical tables, Wiley-Interscience, New York U.S.A., (1972).MATHGoogle Scholar
  53. [53]
    H. Weyl, Über gewönliche lineare Differentialgleichungen mit singulären Stellen und ihre Eigenfunktionen, Göttinger Nachrichten (1910) 442-467, reprinted in H. Weyl, Gessamelte Abhandlungen I, Springer, (1968), pp. 222-247.Google Scholar
  54. [54]
    E.C. Titchmarsh, Eigenfunction expansions with second-order differential operators, Oxford, Clarendon Press, (1946).MATHGoogle Scholar
  55. [55]
    M.N. Olevskii, On the representation of an arbitrary function in the form of an integral with a kernel containing a hypergeometric function (in Russian), Doklady Akad. Nauk SSSR (N.S.) 69 (1949) 11.Google Scholar
  56. [56]
    Y.A. Neretin, Index hypergeometric transform and imitation of analysis of Berezin kernels on hyperbolic spaces, Sbornik Math. 192 (2001) 403 [math/0104035].
  57. [57]
    A. Erdélyi ed., Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York U.S.A., (1953).Google Scholar
  58. [58]
    A. Ebisu and K. Iwasaki, Three-Term Relations for 3F2(1), arXiv:1604.00480.

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Charles M. Melby-Thompson
    • 1
  • Cornelius Schmidt-Colinet
    • 2
  1. 1.Department of PhysicsFudan UniversityShanghaiChina
  2. 2.Arnold Sommerfeld CenterLudwig-Maximilians-UniversitätMünchenGermany

Personalised recommendations