Journal of High Energy Physics

, 2017:59 | Cite as

From quarks to nucleons in dark matter direct detection

  • Fady Bishara
  • Joachim BrodEmail author
  • Benjamin Grinstein
  • Jure Zupan
Open Access
Regular Article - Theoretical Physics


We provide expressions for the nonperturbative matching of the effective field theory describing dark matter interactions with quarks and gluons to the effective theory of nonrelativistic dark matter interacting with nonrelativistic nucleons. We give expressions of leading and subleading order in chiral counting. In general, a single partonic operator matches onto several nonrelativistic operators already at leading order in chiral counting. Keeping only one operator at the time in the nonrelativistic effective theory thus does not properly describe the scattering in direct detection. The matching of the axial-axial partonic level operator, as well as the matching of the operators coupling DM to the QCD anomaly term, include naively momentum suppressed terms. However, these are still of leading chiral order due to pion poles and can be numerically important.


Beyond Standard Model Chiral Lagrangians 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    F. Bishara, J. Brod, B. Grinstein and J. Zupan, Chiral Effective Theory of Dark Matter Direct Detection, JCAP 02 (2017) 009 [arXiv:1611.00368] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP 11 (2010) 042 [arXiv:1008.1591] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The Effective Field Theory of Dark Matter Direct Detection, JCAP 02 (2013) 004 [arXiv:1203.3542] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, Model Independent Direct Detection Analyses, arXiv:1211.2818 [INSPIRE].
  5. [5]
    N. Anand, A.L. Fitzpatrick and W.C. Haxton, Weakly interacting massive particle-nucleus elastic scattering response, Phys. Rev. C 89 (2014) 065501 [arXiv:1308.6288] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 10 (2013) 019 [arXiv:1307.5955] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Barello, S. Chang and C.A. Newby, A Model Independent Approach to Inelastic Dark Matter Scattering, Phys. Rev. D 90 (2014) 094027 [arXiv:1409.0536] [INSPIRE].ADSGoogle Scholar
  8. [8]
    R.J. Hill and M.P. Solon, Standard Model anatomy of WIMP dark matter direct detection II: QCD analysis and hadronic matrix elements, Phys. Rev. D 91 (2015) 043505 [arXiv:1409.8290] [INSPIRE].ADSGoogle Scholar
  9. [9]
    R. Catena and P. Gondolo, Global fits of the dark matter-nucleon effective interactions, JCAP 09 (2014) 045 [arXiv:1405.2637] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Kopp, T. Schwetz and J. Zupan, Global interpretation of direct Dark Matter searches after CDMS-II results, JCAP 02 (2010) 014 [arXiv:0912.4264] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R.J. Hill and M.P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory, Phys. Rev. Lett. 112 (2014) 211602 [arXiv:1309.4092] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Kurylov and M. Kamionkowski, Generalized analysis of weakly interacting massive particle searches, Phys. Rev. D 69 (2004) 063503 [hep-ph/0307185] [INSPIRE].
  14. [14]
    M. Pospelov and T. ter Veldhuis, Direct and indirect limits on the electromagnetic form-factors of WIMPs, Phys. Lett. B 480 (2000) 181 [hep-ph/0003010] [INSPIRE].
  15. [15]
    J. Bagnasco, M. Dine and S.D. Thomas, Detecting technibaryon dark matter, Phys. Lett. B 320 (1994) 99 [hep-ph/9310290] [INSPIRE].
  16. [16]
    V. Cirigliano, M.L. Graesser and G. Ovanesyan, WIMP-nucleus scattering in chiral effective theory, JHEP 10 (2012) 025 [arXiv:1205.2695] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Hoferichter, P. Klos and A. Schwenk, Chiral power counting of one- and two-body currents in direct detection of dark matter, Phys. Lett. B 746 (2015) 410 [arXiv:1503.04811] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Hoferichter, P. Klos, J. Menéndez and A. Schwenk, Analysis strategies for general spin-independent WIMP-nucleus scattering, Phys. Rev. D 94 (2016) 063505 [arXiv:1605.08043] [INSPIRE].ADSGoogle Scholar
  19. [19]
    R. Catena, A. Ibarra and S. Wild, DAMA confronts null searches in the effective theory of dark matter-nucleon interactions, JCAP 05 (2016) 039 [arXiv:1602.04074] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Weinberg, Nuclear forces from chiral Lagrangians, Phys. Lett. B 251 (1990) 288 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Weinberg, Effective chiral Lagrangians for nucleon-pion interactions and nuclear forces, Nucl. Phys. B 363 (1991) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P.F. Bedaque and U. van Kolck, Effective field theory for few nucleon systems, Ann. Rev. Nucl. Part. Sci. 52 (2002) 339 [nucl-th/0203055] [INSPIRE].
  23. [23]
    E. Epelbaum, H.-W. Hammer and U.-G. Meißner, Modern Theory of Nuclear Forces, Rev. Mod. Phys. 81 (2009) 1773 [arXiv:0811.1338] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E. Epelbaum, Nuclear Forces from Chiral Effective Field Theory: A Primer, arXiv:1001.3229 [INSPIRE].
  25. [25]
    D. Gazda, R. Catena and C. Forssén, Ab initio nuclear response functions for dark matter searches, Phys. Rev. D 95 (2017) 103011 [arXiv:1612.09165] [INSPIRE].ADSGoogle Scholar
  26. [26]
    C. Körber, A. Nogga and J. de Vries, First-principle calculations of Dark Matter scattering off light nuclei, Phys. Rev. C 96 (2017) 035805 [arXiv:1704.01150] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Brod, A. Gootjes-Dreesbach, M. Tammaro and J. Zupan, Effective Field Theory for Dark Matter Direct Detection up to Dimension Seven, arXiv:1710.10218 [INSPIRE].
  28. [28]
    PICO collaboration, C. Amole et al., Dark Matter Search Results from the PICO-60 C 3 F 8 Bubble Chamber, Phys. Rev. Lett. 118 (2017) 251301 [arXiv:1702.07666] [INSPIRE].
  29. [29]
    LUX collaboration, D.S. Akerib et al., Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 251302 [arXiv:1705.03380] [INSPIRE].
  30. [30]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on Dark Matter from Colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  31. [31]
    G. Ovanesyan and L. Vecchi, Direct detection of dark matter polarizability, JHEP 07 (2015) 128 [arXiv:1410.0601] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    E.E. Jenkins and A.V. Manohar, Baryon chiral perturbation theory using a heavy fermion lagrangian, Phys. Lett. B 255 (1991) 558.ADSCrossRefGoogle Scholar
  33. [33]
    J. Heinonen, R.J. Hill and M.P. Solon, Lorentz invariance in heavy particle effective theories, Phys. Rev. D 86 (2012) 094020 [arXiv:1208.0601] [INSPIRE].ADSGoogle Scholar
  34. [34]
    V. Cirigliano, S. Davidson and Y. Kuno, Spin-dependent μe conversion, Phys. Lett. B 771 (2017) 242 [arXiv:1703.02057] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  36. [36]
    D.J. Gross, S.B. Treiman and F. Wilczek, Light Quark Masses and Isospin Violation, Phys. Rev. D 19 (1979) 2188 [INSPIRE].ADSGoogle Scholar
  37. [37]
    XENON collaboration, E. Aprile et al., Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector, Phys. Rev. D 96 (2017) 042004 [arXiv:1705.02614] [INSPIRE].
  38. [38]
    R.S. Sufian, Y.-B. Yang, A. Alexandru, T. Draper, J. Liang and K.-F. Liu, Strange Quark Magnetic Moment of the Nucleon at the Physical Point, Phys. Rev. Lett. 118 (2017) 042001 [arXiv:1606.07075] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Green et al., High-precision calculation of the strange nucleon electromagnetic form factors, Phys. Rev. D 92 (2015) 031501 [arXiv:1505.01803] [INSPIRE].ADSGoogle Scholar
  40. [40]
    P.J. Mohr, D.B. Newell and B.N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2014, Rev. Mod. Phys. 88 (2016) 035009 [arXiv:1507.07956] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    F.J. Ernst, R.G. Sachs and K.C. Wali, Electromagnetic form factors of the nucleon, Phys. Rev. 119 (1960) 1105 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R.J. Hill and G. Paz, Model independent extraction of the proton charge radius from electron scattering, Phys. Rev. D 82 (2010) 113005 [arXiv:1008.4619] [INSPIRE].ADSGoogle Scholar
  43. [43]
    G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034 [arXiv:1511.02867] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    QCDSF collaboration, G.S. Bali et al., Strangeness Contribution to the Proton Spin from Lattice QCD, Phys. Rev. Lett. 108 (2012) 222001 [arXiv:1112.3354] [INSPIRE].
  45. [45]
    M. Engelhardt, Strange quark contributions to nucleon mass and spin from lattice QCD, Phys. Rev. D 86 (2012) 114510 [arXiv:1210.0025] [INSPIRE].ADSGoogle Scholar
  46. [46]
    T. Bhattacharya, R. Gupta and B. Yoon, Disconnected Quark Loop Contributions to Nucleon Structure, PoS(LATTICE2014)141 [arXiv:1503.05975] [INSPIRE].
  47. [47]
    C. Alexandrou et al., Nucleon axial form factors using N f = 2 twisted mass fermions with a physical value of the pion mass, Phys. Rev. D 96 (2017) 054507 [arXiv:1705.03399] [INSPIRE].ADSGoogle Scholar
  48. [48]
    HERMES collaboration, A. Airapetian et al., Precise determination of the spin structure function g(1) of the proton, deuteron and neutron, Phys. Rev. D 75 (2007) 012007 [hep-ex/0609039] [INSPIRE].
  49. [49]
    COMPASS collaboration, V. Yu. Alexakhin et al., The Deuteron Spin-dependent Structure Function g1(d) and its First Moment, Phys. Lett. B 647 (2007) 8 [hep-ex/0609038] [INSPIRE].
  50. [50]
    A.S. Meyer, M. Betancourt, R. Gran and R.J. Hill, Deuterium target data for precision neutrino-nucleus cross sections, Phys. Rev. D 93 (2016) 113015 [arXiv:1603.03048] [INSPIRE].ADSGoogle Scholar
  51. [51]
    V. Bernard, L. Elouadrhiri and U.-G. Meißner, Axial structure of the nucleon: Topical Review, J. Phys. G 28 (2002) R1 [hep-ph/0107088] [INSPIRE].
  52. [52]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section, Phys. Rev. D 81 (2010) 092005 [arXiv:1002.2680] [INSPIRE].
  53. [53]
    G. Rajan, J. Yong-Chull, L. Huey-Wen, Y. Boram and B. Tanmoy, Axial Vector Form Factors of the Nucleon from Lattice QCD, arXiv:1705.06834 [INSPIRE].
  54. [54]
    LHPC collaboration, J.D. Bratt et al., Nucleon structure from mixed action calculations using 2 + 1 flavors of asqtad sea and domain wall valence fermions, Phys. Rev. D 82 (2010) 094502 [arXiv:1001.3620] [INSPIRE].
  55. [55]
    V. Bernard, H.W. Fearing, T.R. Hemmert and U.G. Meißner, The form-factors of the nucleon at small momentum transfer, Nucl. Phys. A 635 (1998) 121 [Erratum ibid. A 642 (1998) 563] [hep-ph/9801297] [INSPIRE].
  56. [56]
    P. Junnarkar and A. Walker-Loud, Scalar strange content of the nucleon from lattice QCD, Phys. Rev. D 87 (2013) 114510 [arXiv:1301.1114] [INSPIRE].ADSGoogle Scholar
  57. [57]
    xQCD collaboration, Y.-B. Yang, A. Alexandru, T. Draper, J. Liang and K.-F. Liu, πN and strangeness sigma terms at the physical point with chiral fermions, Phys. Rev. D 94 (2016) 054503 [arXiv:1511.09089] [INSPIRE].
  58. [58]
    S. Dürr et al., Lattice computation of the nucleon scalar quark contents at the physical point, Phys. Rev. Lett. 116 (2016) 172001 [arXiv:1510.08013] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J.M. Alarcon, J. Martin Camalich and J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].ADSGoogle Scholar
  60. [60]
    J. Ruiz de Elvira, M. Hoferichter, B. Kubis and U.-G. Meißner, Extracting the sigma-term from low-energy pion-nucleon scattering, arXiv:1706.01465 [INSPIRE].
  61. [61]
    M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, High-Precision Determination of the Pion-Nucleon σ-term from Roy-Steiner Equations, Phys. Rev. Lett. 115 (2015) 092301 [arXiv:1506.04142] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    L. Álvarez-Ruso, T. Ledwig, J. Martin Camalich and M.J. Vicente Vacas, Nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD world data, EPJ Web Conf. 73 (2014) 04015 [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    ETM collaboration, A. Abdel-Rehim et al., Direct Evaluation of the Quark Content of Nucleons from Lattice QCD at the Physical Point, Phys. Rev. Lett. 116 (2016) 252001 [arXiv:1601.01624] [INSPIRE].
  64. [64]
    M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, Remarks on the pion-nucleon σ-term, Phys. Lett. B 760 (2016) 74 [arXiv:1602.07688] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A. Crivellin, M. Hoferichter and M. Procura, Accurate evaluation of hadronic uncertainties in spin-independent WIMP-nucleon scattering: Disentangling two- and three-flavor effects, Phys. Rev. D 89 (2014) 054021 [arXiv:1312.4951] [INSPIRE].ADSGoogle Scholar
  66. [66]
    C. McNeile et al., Direct determination of the strange and light quark condensates from full lattice QCD, Phys. Rev. D 87 (2013) 034503 [arXiv:1211.6577] [INSPIRE].ADSGoogle Scholar
  67. [67]
    UKQCD, QCDSF collaboration, M. Gockeler et al., Quark helicity flip generalized parton distributions from two-flavor lattice QCD, Phys. Lett. B 627 (2005) 113 [hep-lat/0507001] [INSPIRE].
  68. [68]
    M. Diehl, Generalized parton distributions with helicity flip, Eur. Phys. J. C 19 (2001) 485 [hep-ph/0101335] [INSPIRE].
  69. [69]
    C. Alexandrou et al., Nucleon scalar and tensor charges using lattice QCD simulations at the physical value of the pion mass, Phys. Rev. D 95 (2017) 114514 [arXiv:1703.08788] [INSPIRE].ADSGoogle Scholar
  70. [70]
    T. Bhattacharya, V. Cirigliano, S. Cohen, R. Gupta, H.-W. Lin and B. Yoon, Axial, Scalar and Tensor Charges of the Nucleon from 2 + 1 + 1-flavor Lattice QCD, Phys. Rev. D 94 (2016) 054508 [arXiv:1606.07049] [INSPIRE].ADSGoogle Scholar
  71. [71]
    QCDSF/UKQCD collaboration, D. Pleiter et al., Nucleon form factors and structure functions from N f = 2 Clover fermions, PoS(LATTICE 2010)153 [arXiv:1101.2326] [INSPIRE].
  72. [72]
    G.S. Bali et al., Nucleon isovector couplings from N f = 2 lattice QCD, Phys. Rev. D 91 (2015) 054501 [arXiv:1412.7336] [INSPIRE].ADSGoogle Scholar
  73. [73]
    PNDME collaboration, T. Bhattacharya et al., Iso-vector and Iso-scalar Tensor Charges of the Nucleon from Lattice QCD, Phys. Rev. D 92 (2015) 094511 [arXiv:1506.06411] [INSPIRE].
  74. [74]
    H.-W. Lin, T. Blum, S. Ohta, S. Sasaki and T. Yamazaki, Nucleon structure with two flavors of dynamical domain-wall fermions, Phys. Rev. D 78 (2008) 014505 [arXiv:0802.0863] [INSPIRE].ADSGoogle Scholar
  75. [75]
    J.R. Green, J.W. Negele, A.V. Pochinsky, S.N. Syritsyn, M. Engelhardt and S. Krieg, Nucleon Scalar and Tensor Charges from Lattice QCD with Light Wilson Quarks, Phys. Rev. D 86 (2012) 114509 [arXiv:1206.4527] [INSPIRE].ADSGoogle Scholar
  76. [76]
    C. Alexandrou, M. Constantinou, K. Jansen, G. Koutsou and H. Panagopoulos, Nucleon transversity generalized form factors with twisted mass fermions, PoS(LATTICE 2013)294 [arXiv:1311.4670] [INSPIRE].
  77. [77]
    A. Abdel-Rehim et al., Nucleon and pion structure with lattice QCD simulations at physical value of the pion mass, Phys. Rev. D 92 (2015) 114513 [arXiv:1507.04936] [INSPIRE].ADSGoogle Scholar
  78. [78]
    B. Pasquini, M. Pincetti and S. Boffi, Chiral-odd generalized parton distributions in constituent quark models, Phys. Rev. D 72 (2005) 094029 [hep-ph/0510376] [INSPIRE].
  79. [79]
    H. Gao, T. Liu and Z. Zhao, Nucleon tensor charge and electric dipole moment, arXiv:1704.00113 [INSPIRE].
  80. [80]
    UKQCD, QCDSF collaboration, M. Gockeler et al., Transverse spin structure of the nucleon from lattice QCD simulations, Phys. Rev. Lett. 98 (2007) 222001 [hep-lat/0612032] [INSPIRE].
  81. [81]
    I. Schmidt and J. Soffer, Melosh rotation and the nucleon tensor charge, Phys. Lett. B 407 (1997) 331 [hep-ph/9703411] [INSPIRE].
  82. [82]
    T. Ledwig, A. Silva and H.-C. Kim, Anomalous tensor magnetic moments and form factors of the proton in the self-consistent chiral quark-soliton model, Phys. Rev. D 82 (2010) 054014 [arXiv:1007.1355] [INSPIRE].ADSGoogle Scholar
  83. [83]
    T. Ledwig and H.-C. Kim, Transverse strange quark spin structure of the nucleon, Phys. Rev. D 85 (2012) 034041 [arXiv:1107.4952] [INSPIRE].ADSGoogle Scholar
  84. [84]
    J. Zanotti et al., Transverse spin densities of octet baryons using Lattice QCD, PoS(LATTICE2016)163.
  85. [85]
    A.F. Falk, M.E. Luke and M.J. Savage, Nonperturbative contributions to the inclusive rare decays BX sγ and BX s l + l , Phys. Rev. D 49 (1994) 3367 [hep-ph/9308288] [INSPIRE].
  86. [86]
    A.V. Manohar, The HQET/NRQCD Lagrangian to order α/m − 3, Phys. Rev. D 56 (1997) 230 [hep-ph/9701294] [INSPIRE].
  87. [87]
    M.E. Luke and A.V. Manohar, Reparametrization invariance constraints on heavy particle effective field theories, Phys. Lett. B 286 (1992) 348 [hep-ph/9205228] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Fady Bishara
    • 1
  • Joachim Brod
    • 2
    Email author
  • Benjamin Grinstein
    • 3
  • Jure Zupan
    • 4
    • 5
  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.
  2. 2.Fakultät für PhysikTechnische Universität DortmundDortmundGermany
  3. 3.Department of PhysicsUniversity of California-San DiegoLa JollaU.S.A.
  4. 4.Department of PhysicsUniversity of CincinnatiCincinnatiU.S.A.
  5. 5.Theory DivisionCERNGeneva 23Switzerland

Personalised recommendations