Advertisement

Journal of High Energy Physics

, 2017:50 | Cite as

AdS5 compactifications with punctures in massive IIA supergravity

  • Ibrahima Bah
  • Achilleas Passias
  • Alessandro Tomasiello
Open Access
Regular Article - Theoretical Physics

Abstract

We find AdS5 solutions holographically dual to compactifications of six- dimensional \( \mathcal{N} \) = (1, 0) supersymmetric field theories on Riemann surfaces with punctures. We simplify a previous analysis of supersymmetric AdS5 IIA solutions, and with a suitable Ansatz we find explicit solutions organized in three classes, where an O8-D8 stack, D6-and D4-branes are simultaneously present, localized and partially localized. The D4-branes are smeared over the Riemann surface and this is interpreted as the presence of a uniform distribution of punctures. For the first class we identify the corresponding six-dimensional theory as an E-string theory coupled to a quiver gauge theory. The second class of solutions lacks D6-branes and its central charge scales as n5/2, suggesting a five-dimensional origin for the dual field theory. The last class has elements of the previous two.

Keywords

AdS-CFT Correspondence Brane Dynamics in Gauge Theories Flux compactifications Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Apruzzi, M. Fazzi, A. Passias and A. Tomasiello, Supersymmetric AdS 5 solutions of massive IIA supergravity, JHEP 06 (2015) 195 [arXiv:1502.06620] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  2. [2]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].
  5. [5]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    I. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from M 5-branes, JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    I. Bah and N. Bobev, Linear quivers and \( \mathcal{N} \) = 1 SCFTs from M 5-branes, JHEP 08 (2014) 121 [arXiv:1307.7104] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    P. Agarwal, I. Bah, K. Maruyoshi and J. Song, Quiver tails and \( \mathcal{N} \) = 1 SCFTs from M 5-branes, JHEP 03 (2015) 049 [arXiv:1409.1908] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    I. Bah, AdS 5 solutions from M 5-branes on Riemann surface and D6-branes sources, JHEP 09 (2015) 163 [arXiv:1501.06072] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions, Phys. Lett. B 390 (1997) 169 [hep-th/9609161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    K.A. Intriligator, RG fixed points in six-dimensions via branes at orbifold singularities, Nucl. Phys. B 496 (1997) 177 [hep-th/9702038] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    K.A. Intriligator, New string theories in six-dimensions via branes at orbifold singularities, Adv. Theor. Math. Phys. 1 (1998) 271 [hep-th/9708117] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    I. Brunner and A. Karch, Branes at orbifolds versus Hanany Witten in six-dimensions, JHEP 03 (1998) 003 [hep-th/9712143] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    J.D. Blum and K.A. Intriligator, New phases of string theory and 6D RG fixed points via branes at orbifold singularities, Nucl. Phys. B 506 (1997) 199 [hep-th/9705044] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    L. Bhardwaj, Classification of 6d \( \mathcal{N} \) = (1, 0) gauge theories, JHEP 11 (2015) 002 [arXiv:1502.06594] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS 7 solutions of type-II supergravity, JHEP 04 (2014) 064 [arXiv:1309.2949] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D. Gaiotto and A. Tomasiello, Holography for (1, 0) theories in six dimensions, JHEP 12 (2014) 003 [arXiv:1404.0711] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    F. Apruzzi, M. Fazzi, A. Passias, A. Rota and A. Tomasiello, Six-dimensional superconformal theories and their compactifications from type IIA supergravity, Phys. Rev. Lett. 115 (2015) 061601 [arXiv:1502.06616] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    S. Cremonesi and A. Tomasiello, 6D holographic anomaly match as a continuum limit, JHEP 05 (2016) 031 [arXiv:1512.02225] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    A. Passias, A. Rota and A. Tomasiello, Universal consistent truncation for 6d/ 7d gauge/gravity duals, JHEP 10 (2015) 187 [arXiv:1506.05462] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    M. Del Zotto, C. Vafa and D. Xie, Geometric engineering, mirror symmetry and \( 6{d}_{\left(1,0\right)}\to 4{d}_{\left(\mathcal{N}=2\right)} \), JHEP 11 (2015) 123 [arXiv:1504.08348] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6d \( \mathcal{N} \) = (1, 0) theories on T 2 and class S theories: part I, JHEP 07 (2015) 014 [arXiv:1503.06217] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6d \( \mathcal{N} \) = (1, 0) theories on S 1/T 2 and class S theories: Part II, JHEP 12 (2015) 131 [arXiv:1508.00915] [INSPIRE].ADSMATHGoogle Scholar
  28. [28]
    I. Bah et al., 4d \( \mathcal{N} \) = 1 from 6d \( \mathcal{N} \) = (1, 0) on a torus with fluxes, JHEP 06 (2017) 022 [arXiv:1702.04740] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    D. Gaiotto and S.S. Razamat, \( \mathcal{N} \) = 1 theories of class \( {\mathcal{S}}_k \) , JHEP 07 (2015) 073 [arXiv:1503.05159] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    S. Franco, H. Hayashi and A. Uranga, Charting class \( {\mathcal{S}}_k \) territory, Phys. Rev. D 92 (2015) 045004 [arXiv:1504.05988] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Hanany and K. Maruyoshi, Chiral theories of class \( \mathcal{S} \) , JHEP 12 (2015) 080 [arXiv:1505.05053] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  32. [32]
    S.S. Razamat, C. Vafa and G. Zafrir, 4d \( \mathcal{N} \) = 1 from 6d (1, 0), JHEP 04 (2017) 064 [arXiv:1610.09178] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    O.J. Ganor and A. Hanany, Small E 8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  35. [35]
    J.J. Heckman, D.R. Morrison and C. Vafa, On the classification of 6D SCFTs and generalized ADE orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 06 (2015) 017] [arXiv:1312.5746] [INSPIRE].
  36. [36]
    D. Youm, Partially localized intersecting BPS branes, Nucl. Phys. B 556 (1999) 222 [hep-th/9902208] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    Y. Tachikawa and B. Wecht, Explanation of the central charge ratio 27/32 in four-dimensional renormalization group flows between superconformal theories, Phys. Rev. Lett. 103 (2009) 061601 [arXiv:0906.0965] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    A. Brandhuber and Y. Oz, The D4-D8 brane system and five-dimensional fixed points, Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS 5 solutions of M-theory, Class. Quant. Grav. 21 (2004) 4335 [hep-th/0402153] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    G. Papadopoulos and P.K. Townsend, Intersecting M-branes, Phys. Lett. B 380 (1996) 273 [hep-th/9603087] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    A.A. Tseytlin, Harmonic superpositions of M-branes, Nucl. Phys. B 475 (1996) 149 [hep-th/9604035] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    J.P. Gauntlett, D.A. Kastor and J.H. Traschen, Overlapping branes in M-theory, Nucl. Phys. B 478 (1996) 544 [hep-th/9604179] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    I. Bah, M. Gabella and N. Halmagyi, Punctures from probe M 5-branes and \( \mathcal{N} \) = 1 superconformal field theories, JHEP 07 (2014) 131 [arXiv:1312.6687] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, JHEP 05 (2014) 032 [arXiv:1207.4359] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    N. Bobev, G. Dibitetto, F.F. Gautason and B. Truijen, Holography, brane intersections and six-dimensional SCFTs, JHEP 02 (2017) 116 [arXiv:1612.06324] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    N.T. Macpherson and A. Tomasiello, Minimal flux Minkowski classification, JHEP 09 (2017) 126 [arXiv:1612.06885] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    G. Zafrir, Brane webs, 5d gauge theories and 6d \( \mathcal{N} \) = (1, 0) SCFT’s, JHEP 12 (2015) 157 [arXiv:1509.02016] [INSPIRE].ADSMATHGoogle Scholar
  50. [50]
    J. Polchinski and E. Witten, Evidence for heterotic-Type-I string duality, Nucl. Phys. B 460 (1996) 525 [hep-th/9510169] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    K. Intriligator, 6d, \( \mathcal{N} \) = (1, 0) Coulomb branch anomaly matching, JHEP 10 (2014) 162 [arXiv:1408.6745] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d SCFTs, PTEP 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].
  54. [54]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Anomalies, renormalization group flows and the a-theorem in six-dimensional (1, 0) theories, JHEP 10 (2016) 080 [arXiv:1506.03807] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    M.B. Green, J.H. Schwarz and P.C. West, Anomaly free chiral theories in six-dimensions, Nucl. Phys. B 254 (1985) 327 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    A. Sagnotti, A note on the Green-Schwarz mechanism in open string theories, Phys. Lett. B 294 (1992) 196 [hep-th/9210127] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Ibrahima Bah
    • 1
    • 2
  • Achilleas Passias
    • 3
  • Alessandro Tomasiello
    • 4
    • 5
  1. 1.Department of PhysicsUniversity of California, San DiegoLa JollaU.S.A.
  2. 2.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreU.S.A.
  3. 3.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  4. 4.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  5. 5.INFN — Sezione di Milano-BicoccaMilanoItaly

Personalised recommendations