# Weak gravity conjecture, multiple point principle and the standard model landscape

- 69 Downloads
- 4 Citations

## Abstract

The requirement for an ultraviolet completable theory to be well-behaved upon compactification has been suggested as a guiding principle for distinguishing the landscape from the swampland. Motivated by the weak gravity conjecture and the multiple point principle, we investigate the vacuum structure of the standard model compactified on *S*^{1} and *T* ^{2}. The measured value of the Higgs mass implies, in addition to the electroweak vacuum, the existence of a new vacuum where the Higgs field value is around the Planck scale. We explore two- and three-dimensional critical points of the moduli potential arising from compactifications of the electroweak vacuum as well as this high scale vacuum, in the presence of Majorana/Dirac neutrinos and/or axions. We point out potential sources of instability for these lower dimensional critical points in the standard model landscape. We also point out that a high scale AdS_{4} vacuum of the Standard Model, if exists, would be at odd with the conjecture that all non-supersymmetric AdS vacua are unstable. We argue that, if we require a degeneracy between three- and four-dimensional vacua as suggested by the multiple point principle, the neutrinos are predicted to be Dirac, with the mass of the lightest neutrino \( \approx \mathcal{O}\left(1-10\right) \) meV, which may be tested by future CMB, large scale structure and 21cm line observations.

## Keywords

Field Theories in Lower Dimensions Neutrino Physics Flux compactifications## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]
- [2]N. Arkani-Hamed, S. Dubovsky, A. Nicolis and G. Villadoro,
*Quantum Horizons of the Standard Model Landscape, JHEP***06**(2007) 078 [hep-th/0703067] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [3]J.M. Arnold, B. Fornal and M.B. Wise,
*Standard Model Vacua for Two-dimensional Compactifications, JHEP***12**(2010) 083 [arXiv:1010.4302] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [4]J.M. Arnold, B. Fornal and K. Ishiwata,
*Finite Temperature Structure of the Compactified Standard Model, JHEP***08**(2011) 030 [arXiv:1103.0002] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [5]B. Fornal and M.B. Wise,
*Standard model with compactified spatial dimensions, JHEP***07**(2011) 086 [arXiv:1106.0890] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [6]ATLAS collaboration,
*Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.***B 716**(2012) 1 [arXiv:1207.7214] [INSPIRE]. - [7]CMS collaboration,
*Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.***B 716**(2012) 30 [arXiv:1207.7235] [INSPIRE]. - [8]G. Degrassi et al.,
*Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP***08**(2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar - [9]Y. Hamada, H. Kawai and K.-y. Oda,
*Bare Higgs mass at Planck scale, Phys. Rev.***D 87**(2013) 053009 [*Erratum ibid.***D 89**(2014) 059901] [arXiv:1210.2538] [INSPIRE]. - [10]D. Buttazzo et al.,
*Investigating the near-criticality of the Higgs boson, JHEP***12**(2013) 089 [arXiv:1307.3536] [INSPIRE].ADSCrossRefGoogle Scholar - [11]N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa,
*The string landscape, black holes and gravity as the weakest force, JHEP***06**(2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [12]C. Cheung and G.N. Remmen,
*Naturalness and the Weak Gravity Conjecture, Phys. Rev. Lett.***113**(2014) 051601 [arXiv:1402.2287] [INSPIRE].ADSCrossRefGoogle Scholar - [13]A. de la Fuente, P. Saraswat and R. Sundrum,
*Natural Inflation and Quantum Gravity, Phys. Rev. Lett.***114**(2015) 151303 [arXiv:1412.3457] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [14]J. Brown, W. Cottrell, G. Shiu and P. Soler,
*Fencing in the Swampland: Quantum Gravity Constraints on Large Field Inflation, JHEP***10**(2015) 023 [arXiv:1503.04783] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [15]A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski,
*Winding out of the Swamp: Evading the Weak Gravity Conjecture with F-term Winding Inflation?, Phys. Lett.***B 748**(2015) 455 [arXiv:1503.07912] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [16]T.C. Bachlechner, C. Long and L. McAllister,
*Planckian Axions and the Weak Gravity Conjecture, JHEP***01**(2016) 091 [arXiv:1503.07853] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [17]J. Brown, W. Cottrell, G. Shiu and P. Soler,
*On Axionic Field Ranges, Loopholes and the Weak Gravity Conjecture*,*JHEP***04**(2016) 017 [arXiv:1504.00659] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [18]D. Junghans,
*Large-Field Inflation with Multiple Axions and the Weak Gravity Conjecture, JHEP***02**(2016) 128 [arXiv:1504.03566] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [19]B. Heidenreich, M. Reece and T. Rudelius,
*Weak Gravity Strongly Constrains Large-Field Axion Inflation, JHEP***12**(2015) 108 [arXiv:1506.03447] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [20]K. Kooner, S. Parameswaran and I. Zavala,
*Warping the Weak Gravity Conjecture, Phys. Lett.***B 759**(2016) 402 [arXiv:1509.07049] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [21]D. Harlow,
*Wormholes, Emergent Gauge Fields and the Weak Gravity Conjecture, JHEP***01**(2016) 122 [arXiv:1510.07911] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [22]L.E. Ibáñez, M. Montero, A. Uranga and I. Valenzuela,
*Relaxion Monodromy and the Weak Gravity Conjecture, JHEP***04**(2016) 020 [arXiv:1512.00025] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [23]M. Montero, G. Shiu and P. Soler,
*The Weak Gravity Conjecture in three dimensions, JHEP***10**(2016) 159 [arXiv:1606.08438] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [24]W. Cottrell, G. Shiu and P. Soler,
*Weak Gravity Conjecture and Extremal Black Holes*, PoS(CORFU2016)130 [arXiv:1611.06270] [INSPIRE]. - [25]A. Hebecker, P. Henkenjohann and L.T. Witkowski,
*What is the Magnetic Weak Gravity Conjecture for Axions?, Fortsch. Phys.***65**(2017) 1700011 [arXiv:1701.06553] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [26]E. Palti, The
*Weak Gravity Conjecture and Scalar Fields, JHEP***08**(2017) 034 [arXiv:1705.04328] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [27]B. Heidenreich, M. Reece and T. Rudelius,
*Sharpening the Weak Gravity Conjecture with Dimensional Reduction, JHEP***02**(2016) 140 [arXiv:1509.06374] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [28]B. Heidenreich, M. Reece and T. Rudelius,
*Evidence for a sublattice weak gravity conjecture, JHEP***08**(2017) 025 [arXiv:1606.08437] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [29]M. Montero, A.M. Uranga and I. Valenzuela,
*A Chern-Simons Pandemic, JHEP***07**(2017) 123 [arXiv:1702.06147] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [30]
- [31]
- [32]U. Danielsson and G. Dibitetto,
*Fate of stringy AdS vacua and the weak gravity conjecture, Phys. Rev.***D 96**(2017) 026020 [arXiv:1611.01395] [INSPIRE].ADSGoogle Scholar - [33]C.D. Froggatt and H.B. Nielsen,
*Standard model criticality prediction: Top mass*173 ± 5*GeV and Higgs mass*135 ± 9*GeV, Phys. Lett.***B 368**(1996) 96 [hep-ph/9511371] [INSPIRE]. - [34]D.L. Bennett,
*Multiple point criticality, nonlocality, and fine tuning in fundamental physics*:*Predictions for gauge coupling constants gives α*^{−1}= 136.8 ± 9, Ph.D. Thesis, Bohr Institute (1996) [hep-ph/9607341]. - [35]Y. Hamada, H. Kawai and K.-y. Oda,
*Eternal Higgs inflation and the cosmological constant problem, Phys. Rev.***D 92**(2015) 045009 [arXiv:1501.04455] [INSPIRE].ADSMathSciNetGoogle Scholar - [36]Y. Hamada, H. Kawai and K. Kawana,
*Evidence of the Big Fix, Int. J. Mod. Phys.***A 29**(2014) 1450099 [arXiv:1405.1310] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [37]Y. Hamada, H. Kawai and K. Kawana,
*Weak Scale From the Maximum Entropy Principle, PTEP***2015**(2015) 033B06 [arXiv:1409.6508] [INSPIRE]. - [38]Y. Hamada, H. Kawai and K. Kawana,
*Natural solution to the naturalness problem: The universe does fine-tuning, PTEP***2015**(2015) 123B03 [arXiv:1509.05955] [INSPIRE]. - [39]H.B. Nielsen,
*PREdicted the Higgs Mass, Bled Workshops Phys.***13**(2012) 94 [arXiv:1212.5716] [INSPIRE].Google Scholar - [40]S.M. Carroll, M.C. Johnson and L. Randall,
*Dynamical compactification from de Sitter space, JHEP***11**(2009) 094 [arXiv:0904.3115] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [41]L.E. Ibáñez, V. Martin-Lozano and I. Valenzuela,
*Constraining Neutrino Masses, the Cosmological Constant and BSM Physics from the Weak Gravity Conjecture*, arXiv:1706.05392 [INSPIRE]. - [42]Y. Hamada, H. Kawai, K.-y. Oda and S.C. Park,
*Higgs inflation from Standard Model criticality, Phys. Rev.***D 91**(2015) 053008 [arXiv:1408.4864] [INSPIRE].ADSGoogle Scholar - [43]KamLAND collaboration, A. Gando et al.,
*Reactor On-Off Antineutrino Measurement with KamLAND, Phys. Rev.***D 88**(2013) 033001 [arXiv:1303.4667] [INSPIRE]. - [44]T. Banks,
*TASI Lectures on Holographic Space-Time, SUSY and Gravitational Effective Field Theory, in Proceedings*, Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2010).*String Theory and Its Applications: From meV to the Planck Scale*, Boulder, Colorado, U.S.A., 1-25 June 2010 [arXiv:1007.4001]. - [45]E. Witten,
*Instability of the Kaluza-Klein Vacuum, Nucl. Phys.***B 195**(1982) 481 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [46]J.J. Blanco-Pillado, B. Shlaer, K. Sousa and J. Urrestilla,
*Bubbles of Nothing and Supersymmetric Compactifications, JCAP***10**(2016) 002 [arXiv:1606.03095] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [47]R. Bousso and J. Polchinski,
*Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP***06**(2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [48]P. Breitenlohner and D.Z. Freedman,
*Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett.***B 115**(1982) 197 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [49]P. Breitenlohner and D.Z. Freedman,
*Stability in Gauged Extended Supergravity, Annals Phys.***144**(1982) 249 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [50]Planck collaboration, P.A.R. Ade et al.,
*Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys.***594**(2016) A13 [arXiv:1502.01589] [INSPIRE]. - [51]S.M. Bilenky and C. Giunti,
*Neutrinoless double-beta decay: A brief review, Mod. Phys. Lett.***A 27**(2012) 1230015 [arXiv:1203.5250] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [52]G. Mellema et al.,
*Reionization and the Cosmic Dawn with the Square Kilometre Array, Exper. Astron.***36**(2013) 235 [arXiv:1210.0197] [INSPIRE].ADSCrossRefGoogle Scholar - [53]POLARBEAR collaboration, A. Suzuki et al.,
*The POLARBEAR-2 and the Simons Array Experiment*,*J. Low. Temp. Phys.***184**(2016) 805 [arXiv:1512.07299] [INSPIRE]. - [54]DESI collaboration, M. Levi et al.,
*The DESI Experiment, a whitepaper for Snowmass 2013*, arXiv:1308.0847 [INSPIRE]. - [55]A. Liu, J.R. Pritchard, R. Allison, A.R. Parsons, U. Seljak and B.D. Sherwin,
*Eliminating the optical depth nuisance from the CMB with 21 cm cosmology, Phys. Rev*.**D 93**(2016) 043013 [arXiv:1509.08463] [INSPIRE].ADSGoogle Scholar - [56]Y. Oyama, K. Kohri and M. Hazumi,
*Constraints on the neutrino parameters by future cosmological 21 cm line and precise CMB polarization observations, JCAP***02**(2016) 008 [arXiv:1510.03806] [INSPIRE].ADSCrossRefGoogle Scholar - [57]M.S. Turner and L. Widrow,
*The Bianchi Models and New Inflation*, (1986) [INSPIRE]. - [58]E. Elizalde,
*Multidimensional extension of the generalized Chowla-Selberg formula, Commun. Math. Phys.***198**(1998) 83 [hep-th/9707257] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [59]E. Ponton and E. Poppitz,
*Casimir energy and radius stabilization in five-dimensional orbifolds and six-dimensional orbifolds, JHEP***06**(2001) 019 [hep-ph/0105021] [INSPIRE]. - [60]M.E. Peskin and D.V. Schroeder,
*An Introduction to quantum field theory*, Avalon Publishing (1995).Google Scholar - [61]S. Moroz,
*Below the Breitenlohner-Freedman bound in the nonrelativistic AdS/CFT correspondence, Phys. Rev.***D 81**(2010) 066002 [arXiv:0911.4060] [INSPIRE].ADSGoogle Scholar