Journal of High Energy Physics

, 2017:26 | Cite as

N =1 supergravitational heterotic galileons

  • Rehan DeenEmail author
  • Burt Ovrut
Open Access
Regular Article - Theoretical Physics


Heterotic M -theory consists of a five-dimensional manifold of the form S1/Z2 × M4. It has been shown that one of the two orbifold planes, the “observable” sector, can have a low energy particle spectrum which is precisely the N = 1 super-symmetric standard model with three right-handed neutrino chiral supermultiplets. The other orbifold plane constitutes a “hidden” sector which, since its communication with the observable sector is suppressed, will be ignored in this paper. However, the finite fifth-dimension allows for the existence of three-brane solitons which, in order to render the vacuum anomaly free, must appear. That is, heterotic M -theory provides a natural framework for brane-world cosmological scenarios coupled to realistic particle physics. The complete worldvolume action of such three-branes is unknown. Here, treating these solitons as probe branes, we construct their scalar worldvolume Lagrangian as a derivative expansion of the heterotic DBI action. In analogy with similar calculations in the M5 and AdS5 context, this leads to the construction of “heterotic Galileons”. However, realistic vacua of heterotic M -theory are necessarily N = 1 supersymmetric in four dimensions. Hence, we proceed to supersymmetrize the three-brane worldvolume action, first in flat superspace and then extend the results to N = 1 supergravity. Such a worldvolume action may lead to interesting cosmology, such as “bouncing” universe models, by allowing for the violation of the Null Energy Condition (NEC).


p-branes Supergravity Models Superstrings and Heterotic Strings Supersymmetric Effective Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M.B. Einhorn and D.R.T. Jones, Inflation with Non-minimal Gravitational Couplings in Supergravity, JHEP 03 (2010) 026 [arXiv:0912.2718] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, Jordan Frame Supergravity and Inflation in NMSSM, Phys. Rev. D 82 (2010) 045003 [arXiv:1004.0712] [INSPIRE].ADSGoogle Scholar
  6. [6]
    R. Deen, B.A. Ovrut and A. Purves, Supersymmetric Sneutrino-Higgs Inflation, Phys. Lett. B 762 (2016) 441 [arXiv:1606.00431] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, The Ekpyrotic universe: Colliding branes and the origin of the hot big bang, Phys. Rev. D 64 (2001) 123522 [hep-th/0103239] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    J. Khoury, B.A. Ovrut, N. Seiberg, P.J. Steinhardt and N. Turok, From big crunch to big bang, Phys. Rev. D 65 (2002) 086007 [hep-th/0108187] [INSPIRE].ADSGoogle Scholar
  9. [9]
    J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, Density perturbations in the ekpyrotic scenario, Phys. Rev. D 66 (2002) 046005 [hep-th/0109050] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    E.I. Buchbinder, J. Khoury and B.A. Ovrut, New Ekpyrotic cosmology, Phys. Rev. D 76 (2007) 123503 [hep-th/0702154] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    E.I. Buchbinder, J. Khoury and B.A. Ovrut, On the initial conditions in new ekpyrotic cosmology, JHEP 11 (2007) 076 [arXiv:0706.3903] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    E.I. Buchbinder, J. Khoury and B.A. Ovrut, Non-Gaussianities in new ekpyrotic cosmology, Phys. Rev. Lett. 100 (2008) 171302 [arXiv:0710.5172] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Creminelli and L. Senatore, A smooth bouncing cosmology with scale invariant spectrum, JCAP 11 (2007) 010 [hep-th/0702165] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D.A. Easson, I. Sawicki and A. Vikman, G-Bounce, JCAP 11 (2011) 021 [arXiv:1109.1047] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y.-F. Cai, D.A. Easson and R. Brandenberger, Towards a Nonsingular Bouncing Cosmology, JCAP 08 (2012) 020 [arXiv:1206.2382] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R.H. Brandenberger, The Matter Bounce Alternative to Inflationary Cosmology, arXiv:1206.4196 [INSPIRE].
  17. [17]
    R. Brandenberger and P. Peter, Bouncing Cosmologies: Progress and Problems, Found. Phys. 47 (2017) 797 [arXiv:1603.05834] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Koehn, J.-L. Lehners and B.A. Ovrut, Cosmological super-bounce, Phys. Rev. D 90 (2014) 025005 [arXiv:1310.7577] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Koehn, J.-L. Lehners and B. Ovrut, Nonsingular bouncing cosmology: Consistency of the effective description, Phys. Rev. D 93 (2016) 103501 [arXiv:1512.03807] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Ijjas and P.J. Steinhardt, Classically stable nonsingular cosmological bounces, Phys. Rev. Lett. 117 (2016) 121304 [arXiv:1606.08880] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A. Ijjas and P.J. Steinhardt, Fully stable cosmological solutions with a non-singular classical bounce, Phys. Lett. B 764 (2017) 289 [arXiv:1609.01253] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    P. Creminelli, A. Nicolis and E. Trincherini, Galilean Genesis: An alternative to inflation, JCAP 11 (2010) 021 [arXiv:1007.0027] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    K. Hinterbichler, A. Joyce, J. Khoury and G.E.J. Miller, Dirac-Born-Infeld Genesis: An Improved Violation of the Null Energy Condition, Phys. Rev. Lett. 110 (2013) 241303 [arXiv:1212.3607] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Goon, K. Hinterbichler and M. Trodden, Symmetries for Galileons and DBI scalars on curved space, JCAP 07 (2011) 017 [arXiv:1103.5745] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G. Goon, K. Hinterbichler and M. Trodden, A New Class of Effective Field Theories from Embedded Branes, Phys. Rev. Lett. 106 (2011) 231102 [arXiv:1103.6029] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G.R. Dvali, G. Gabadadze and M. Porrati, 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    A. Lukas, B.A. Ovrut and D. Waldram, On the four-dimensional effective action of strongly coupled heterotic string theory, Nucl. Phys. B 532 (1998) 43 [hep-th/9710208] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, The Universe as a domain wall, Phys. Rev. D 59 (1999) 086001 [hep-th/9803235] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, Heterotic M-theory in five-dimensions, Nucl. Phys. B 552 (1999) 246 [hep-th/9806051] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    B.A. Ovrut and J. Stokes, Heterotic Kink Solitons and their Worldvolume Action, JHEP 09 (2012) 065 [arXiv:1205.4236] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Deen and B. Ovrut, Supergravitational Conformal Galileons, JHEP 08 (2017) 014 [arXiv:1705.06729] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven-dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  35. [35]
    P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  36. [36]
    A. Lukas, B.A. Ovrut and D. Waldram, Nonstandard embedding and five-branes in heterotic M-theory, Phys. Rev. D 59 (1999) 106005 [hep-th/9808101] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    R. Donagi, A. Lukas, B.A. Ovrut and D. Waldram, Holomorphic vector bundles and nonperturbative vacua in M-theory, JHEP 06 (1999) 034 [hep-th/9901009] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The Particle spectrum of heterotic compactifications, JHEP 12 (2004) 054 [hep-th/0405014] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    R. Donagi, B.A. Ovrut and D. Waldram, Moduli spaces of five-branes on elliptic Calabi-Yau threefolds, JHEP 11 (1999) 030 [hep-th/9904054] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    V. Braun, B.A. Ovrut, T. Pantev and R. Reinbacher, Elliptic Calabi-Yau threefolds with Z(3) x Z(3) Wilson lines, JHEP 12 (2004) 062 [hep-th/0410055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A standard model from the E 8 × E 8 heterotic superstring, JHEP 06 (2005) 039 [hep-th/0502155] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, Vector bundle extensions, sheaf cohomology and the heterotic standard model, Adv. Theor. Math. Phys. 10 (2006) 525 [hep-th/0505041] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    V. Braun, Y.-H. He and B.A. Ovrut, Supersymmetric Hidden Sectors for Heterotic Standard Models, JHEP 09 (2013) 008 [arXiv:1301.6767] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Brandle and A. Lukas, Five-branes in heterotic brane world theories, Phys. Rev. D 65 (2002) 064024 [hep-th/0109173] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    N.D. Antunes, E.J. Copeland, M. Hindmarsh and A. Lukas, Kinky brane worlds, Phys. Rev. D 68 (2003) 066005 [hep-th/0208219] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant Galileon, Phys. Rev. D 79 (2009) 084003 [arXiv:0901.1314] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J. Bagger and J. Wess, Supersymmetry and Supergravity, second edition, Princeton University Press (1992) [ISBN: 0-691-08556-0].Google Scholar
  50. [50]
    J. Khoury, J.-L. Lehners and B.A. Ovrut, Supersymmetric Galileons, Phys. Rev. D 84 (2011) 043521 [arXiv:1103.0003] [INSPIRE].ADSGoogle Scholar
  51. [51]
    M. Koehn, J.-L. Lehners and B.A. Ovrut, Higher-Derivative Chiral Superfield Actions Coupled to N = 1 Supergravity, Phys. Rev. D 86 (2012) 085019 [arXiv:1207.3798] [INSPIRE].ADSGoogle Scholar
  52. [52]
    D. Ciupke, J. Louis and A. Westphal, Higher-Derivative Supergravity and Moduli Stabilization, JHEP 10 (2015) 094 [arXiv:1505.03092] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    D. Baumann and D. Green, Supergravity for Effective Theories, JHEP 03 (2012) 001 [arXiv:1109.0293] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    F. Farakos, C. Germani, A. Kehagias and E.N. Saridakis, A New Class of Four-Dimensional N =1 Supergravity with Non-minimal Derivative Couplings, JHEP 05 (2012) 050 [arXiv:1202.3780] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    F. Farakos and A. Kehagias, Emerging Potentials in Higher-Derivative Gauged Chiral Models Coupled to N = 1 Supergravity, JHEP 11 (2012) 077 [arXiv:1207.4767] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    F. Farakos, C. Germani and A. Kehagias, On ghost-free supersymmetric galileons, JHEP 11 (2013) 045 [arXiv:1306.2961] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    D. Ciupke, Scalar Potential from Higher Derivative \( \mathcal{N} \) = 1 Superspace, arXiv:1605.00651 [INSPIRE].
  58. [58]
    J.D. Hunter, Matplotlib: A 2d graphics environment, Comput. Sci. Eng. 9 (2007) 3.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaU.S.A.

Personalised recommendations