Journal of High Energy Physics

, 2017:22 | Cite as

Visible neutrino decay in the light of appearance and disappearance long-baseline experiments

  • Alberto M. Gago
  • Ricardo A. Gomes
  • Abner L.G. Gomes
  • Joel Jones-PérezEmail author
  • Orlando L.G. Peres
Open Access
Regular Article - Theoretical Physics


We investigate the present constraints from MINOS and T2K experiments for the neutrino decay scenario induced by non-diagonal couplings of Majorons to neutrinos. As novelty, on top of the typical invisible decay prescription, we add the contribution of visible decay, where final products can be observed. This new effect depends on the nature of the neutrino-Majoron coupling, which can be of scalar or pseudoscalar type. Using the combination of disappearance data from MINOS and disappearance and appearance data from T2K, for normal ordering, we constrain the decay parameter αE Γ for the heaviest neutrino, where E and Γ are the neutrino energy and width, respectively. We find that when considering visible decay within appearance data, one can improve current neutrino long-baseline constraints up to \( \alpha <\mathcal{O}\left(1{0}^{-5}\right)\ {\mathrm{eV}}^2 \), at 90% C.L., for both kinds of couplings, which is better by one order of magnitude compared to previous bounds.


Beyond Standard Model Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal, Phys. Rev. C 60 (1999) 055801 [astro-ph/9907113] [INSPIRE].
  3. [3]
    GNO collaboration, M. Altmann et al., GNO solar neutrino observations: Results for GNO I, Phys. Lett. B 490 (2000) 16 [hep-ex/0006034] [INSPIRE].
  4. [4]
    Super-Kamiokande collaboration, S. Fukuda et al., Solar B-8 and hep neutrino measurements from 1258 days of Super-Kamiokande data, Phys. Rev. Lett. 86 (2001) 5651 [hep-ex/0103032] [INSPIRE].
  5. [5]
    SNO collaboration, Q.R. Ahmad et al., Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters, Phys. Rev. Lett. 89 (2002) 011302 [nucl-ex/0204009] [INSPIRE].
  6. [6]
    R. Davis, A half-century with solar neutrinos, Int. J. Mod. Phys. A 18 (2003) 3089 [INSPIRE].
  7. [7]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
  8. [8]
    MACRO collaboration, M. Ambrosio et al., Matter effects in upward going muons and sterile neutrino oscillations, Phys. Lett. B 517 (2001) 59 [hep-ex/0106049] [INSPIRE].
  9. [9]
    Super-Kamiokande collaboration, T. Kajita, E. Kearns and M. Shiozawa, Establishing atmospheric neutrino oscillations with Super-Kamiokande, Nucl. Phys. B 908 (2016) 14 [INSPIRE].
  10. [10]
    KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [hep-ex/0406035] [INSPIRE].
  11. [11]
    Daya Bay collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].
  12. [12]
    Double CHOOZ collaboration, Y. Abe et al., Indication of Reactor \( {\overline{\nu}}_e \) Disappearance in the Double CHOOZ Experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].
  13. [13]
    RENO collaboration, J.K. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].
  14. [14]
    MINOS collaboration, P. Adamson et al., A Study of Muon Neutrino Disappearance Using the Fermilab Main Injector Neutrino Beam, Phys. Rev. D 77 (2008) 072002 [arXiv:0711.0769] [INSPIRE].
  15. [15]
    T2K collaboration, K. Abe et al., First Muon-Neutrino Disappearance Study with an Off-Axis Beam, Phys. Rev. D 85 (2012) 031103 [arXiv:1201.1386] [INSPIRE].
  16. [16]
    MINOS collaboration, P. Adamson et al., Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].
  17. [17]
    NOvA collaboration, P. Adamson et al., Measurement of the neutrino mixing angle θ 23 in NOvA, Phys. Rev. Lett. 118 (2017) 151802 [arXiv:1701.05891] [INSPIRE].
  18. [18]
    M.C. Gonzalez-Garcia and Y. Nir, Neutrino masses and mixing: Evidence and implications, Rev. Mod. Phys. 75 (2003) 345 [hep-ph/0202058] [INSPIRE].
  19. [19]
    SNO collaboration, A.B. McDonald, Sudbury neutrino observatory results, Phys. Scripta T 121 (2005) 29 [hep-ex/0412060] [INSPIRE].
  20. [20]
    B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP 6 (1957) 429 [INSPIRE].ADSGoogle Scholar
  21. [21]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    M.C. Gonzalez-Garcia et al., Atmospheric neutrino observations and flavor changing interactions, Phys. Rev. Lett. 82 (1999) 3202 [hep-ph/9809531] [INSPIRE].
  23. [23]
    S. Bergmann, M.M. Guzzo, P.C. de Holanda, P.I. Krastev and H. Nunokawa, Status of the solution to the solar neutrino problem based on nonstandard neutrino interactions, Phys. Rev. D 62 (2000) 073001 [hep-ph/0004049] [INSPIRE].
  24. [24]
    M.M. Guzzo, P.C. de Holanda and O.L.G. Peres, Effects of nonstandard neutrino interactions on MSW-LMA solution to the solar neutrino problems, Phys. Lett. B 591 (2004) 1 [hep-ph/0403134] [INSPIRE].
  25. [25]
    A.M. Gago et al., Global analysis of the postSNO solar neutrino data for standard and nonstandard oscillation mechanisms, Phys. Rev. D 65 (2002) 073012 [hep-ph/0112060] [INSPIRE].
  26. [26]
    A.M. Gago, M.M. Guzzo, H. Nunokawa, W.J.C. Teves and R. Zukanovich Funchal, Probing flavor changing neutrino interactions using neutrino beams from a muon storage ring, Phys. Rev. D 64 (2001) 073003 [hep-ph/0105196] [INSPIRE].
  27. [27]
    G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Probing non-standard decoherence effects with solar and KamLAND neutrinos, Phys. Rev. D 76 (2007) 033006 [arXiv:0704.2568] [INSPIRE].ADSGoogle Scholar
  28. [28]
    T. Ohlsson, Status of non-standard neutrino interactions, Rept. Prog. Phys. 76 (2013) 044201 [arXiv:1209.2710] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Esmaili and A. Yu. Smirnov, Probing Non-Standard Interaction of Neutrinos with IceCube and DeepCore, JHEP 06 (2013) 026 [arXiv:1304.1042] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A.M. Gago, E.M. Santos, W.J.C. Teves and R. Zukanovich Funchal, Quantum dissipative effects and neutrinos: Current constraints and future perspectives, Phys. Rev. D 63 (2001) 073001 [hep-ph/0009222] [INSPIRE].
  31. [31]
    A.M. Gago, E.M. Santos, W.J.C. Teves and R. Zukanovich Funchal, A Study on quantum decoherence phenomena with three generations of neutrinos, hep-ph/0208166 [INSPIRE].
  32. [32]
    G.L. Fogli, E. Lisi, A. Marrone and D. Montanino, Status of atmospheric ν μ → ν τ oscillations and decoherence after the first K2K spectral data, Phys. Rev. D 67 (2003) 093006 [hep-ph/0303064] [INSPIRE].
  33. [33]
    D. Morgan, E. Winstanley, J. Brunner and L.F. Thompson, Probing quantum decoherence in atmospheric neutrino oscillations with a neutrino telescope, Astropart. Phys. 25 (2006) 311 [astro-ph/0412618] [INSPIRE].
  34. [34]
    E. Lisi, A. Marrone and D. Montanino, Probing possible decoherence effects in atmospheric neutrino oscillations, Phys. Rev. Lett. 85 (2000) 1166 [hep-ph/0002053] [INSPIRE].
  35. [35]
    D. Hooper, D. Morgan and E. Winstanley, Probing quantum decoherence with high-energy neutrinos, Phys. Lett. B 609 (2005) 206 [hep-ph/0410094] [INSPIRE].
  36. [36]
    Y. Farzan, T. Schwetz and A.Y. Smirnov, Reconciling results of LSND, MiniBooNE and other experiments with soft decoherence, JHEP 07 (2008) 067 [arXiv:0805.2098] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R.L.N. Oliveira and M.M. Guzzo, Quantum dissipation in vacuum neutrino oscillation, Eur. Phys. J. C 69 (2010) 493 [INSPIRE].
  38. [38]
    R.L.N. Oliveira, Dissipação quântica em oscilações de neutrinos, Ph.D. Thesis, University of Campinas, Campinas Brazil (2013).Google Scholar
  39. [39]
    R.L.N. Oliveira and M.M. Guzzo, Dissipation and θ 13 in neutrino oscillations, Eur. Phys. J. C 73 (2013) 2434 [INSPIRE].
  40. [40]
    J.M. Berryman, A. de Gouvêa, D. Hernández and R.L.N. Oliveira, Non-Unitary Neutrino Propagation From Neutrino Decay, Phys. Lett. B 742 (2015) 74 [arXiv:1407.6631] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    J.A. Frieman, H.E. Haber and K. Freese, Neutrino Mixing, Decays and Supernova Sn1987a, Phys. Lett. B 200 (1988) 115 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R.S. Raghavan, X.-G. He and S. Pakvasa, MSW catalyzed neutrino decay, Phys. Rev. D 38 (1988) 1317 [INSPIRE].ADSGoogle Scholar
  43. [43]
    Z.G. Berezhiani, G. Fiorentini, M. Moretti and A. Rossi, Fast neutrino decay and solar neutrino detectors, Z. Phys. C 54 (1992) 581 [INSPIRE].ADSGoogle Scholar
  44. [44]
    Z.G. Berezhiani, G. Fiorentini, A. Rossi and M. Moretti, Neutrino decay solution of the solar neutrino problem revisited, JETP Lett. 55 (1992) 151 [INSPIRE].ADSGoogle Scholar
  45. [45]
    Z.G. Berezhiani and A. Rossi, Matter induced neutrino decay: New candidate for the solution to the solar neutrino problem, hep-ph/9306278 [INSPIRE].
  46. [46]
    V.D. Barger, J.G. Learned, P. Lipari, M. Lusignoli, S. Pakvasa and T.J. Weiler, Neutrino decay and atmospheric neutrinos, Phys. Lett. B 462 (1999) 109 [hep-ph/9907421] [INSPIRE].
  47. [47]
    J.F. Beacom and N.F. Bell, Do solar neutrinos decay?, Phys. Rev. D 65 (2002) 113009 [hep-ph/0204111] [INSPIRE].
  48. [48]
    A.S. Joshipura, E. Masso and S. Mohanty, Constraints on decay plus oscillation solutions of the solar neutrino problem, Phys. Rev. D 66 (2002) 113008 [hep-ph/0203181] [INSPIRE].
  49. [49]
    A. Bandyopadhyay, S. Choubey and S. Goswami, Neutrino decay confronts the SNO data, Phys. Lett. B 555 (2003) 33 [hep-ph/0204173] [INSPIRE].
  50. [50]
    S. Ando, Appearance of neutronization peak and decaying supernova neutrinos, Phys. Rev. D 70 (2004) 033004 [hep-ph/0405200] [INSPIRE].
  51. [51]
    G.L. Fogli, E. Lisi, A. Mirizzi and D. Montanino, Three generation flavor transitions and decays of supernova relic neutrinos, Phys. Rev. D 70 (2004) 013001 [hep-ph/0401227] [INSPIRE].
  52. [52]
    S. Palomares-Ruiz, S. Pascoli and T. Schwetz, Explaining LSND by a decaying sterile neutrino, JHEP 09 (2005) 048 [hep-ph/0505216] [INSPIRE].
  53. [53]
    M.C. Gonzalez-Garcia and M. Maltoni, Status of Oscillation plus Decay of Atmospheric and Long-Baseline Neutrinos, Phys. Lett. B 663 (2008) 405 [arXiv:0802.3699] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Maltoni and W. Winter, Testing neutrino oscillations plus decay with neutrino telescopes, JHEP 07 (2008) 064 [arXiv:0803.2050] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    P. Baerwald, M. Bustamante and W. Winter, Neutrino Decays over Cosmological Distances and the Implications for Neutrino Telescopes, JCAP 10 (2012) 020 [arXiv:1208.4600] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    D. Meloni and T. Ohlsson, Neutrino flux ratios at neutrino telescopes: The Role of uncertainties of neutrino mixing parameters and applications to neutrino decay, Phys. Rev. D 75 (2007) 125017 [hep-ph/0612279] [INSPIRE].
  57. [57]
    C.R. Das and J. Pulido, Improving LMA predictions with non-standard interactions: Neutrino decay in solar matter?, Phys. Rev. D 83 (2011) 053009 [arXiv:1007.2167] [INSPIRE].
  58. [58]
    L. Dorame, O.G. Miranda and J.W.F. Valle, Invisible decays of ultra-high energy neutrinos, Front. Phys. 1 (2013) 25 [arXiv:1303.4891] [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    R.A. Gomes, A.L.G. Gomes and O.L.G. Peres, Constraints on neutrino decay lifetime using long-baseline charged and neutral current data, Phys. Lett. B 740 (2015) 345 [arXiv:1407.5640] [INSPIRE].
  60. [60]
    J.M. Berryman, A. de Gouvêa and D. Hernandez, Solar Neutrinos and the Decaying Neutrino Hypothesis, Phys. Rev. D 92 (2015) 073003 [arXiv:1411.0308] [INSPIRE].
  61. [61]
    R. Picoreti, M.M. Guzzo, P.C. de Holanda and O.L.G. Peres, Neutrino Decay and Solar Neutrino Seasonal Effect, Phys. Lett. B 761 (2016) 70 [arXiv:1506.08158] [INSPIRE].
  62. [62]
    T. Abrahão, H. Minakata, H. Nunokawa and A.A. Quiroga, Constraint on Neutrino Decay with Medium-Baseline Reactor Neutrino Oscillation Experiments, JHEP 11 (2015) 001 [arXiv:1506.02314] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Bustamante, J.F. Beacom and K. Murase, Testing decay of astrophysical neutrinos with incomplete information, Phys. Rev. D 95 (2017) 063013 [arXiv:1610.02096] [INSPIRE].
  64. [64]
    J.T. Pantaleone, A. Halprin and C.N. Leung, Neutrino mixing due to a violation of the equivalence principle, Phys. Rev. D 47 (1993) R4199 [hep-ph/9211214] [INSPIRE].
  65. [65]
    M. Bustamante, A.M. Gago and C. Pena-Garay, Energy-independent new physics in the flavour ratios of high-energy astrophysical neutrinos, JHEP 04 (2010) 066 [arXiv:1001.4878] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  66. [66]
    V.D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, CPT odd resonances in neutrino oscillations, Phys. Rev. Lett. 85 (2000) 5055 [hep-ph/0005197] [INSPIRE].
  67. [67]
    D. Colladay and V.A. Kostelecky, Lorentz violating extension of the standard model, Phys. Rev. D 58 (1998) 116002 [hep-ph/9809521] [INSPIRE].
  68. [68]
    A. Esmaili, D.R. Gratieri, M.M. Guzzo, P.C. de Holanda, O.L.G. Peres and G.A. Valdiviesso, Constraining the violation of the equivalence principle with IceCube atmospheric neutrino data, Phys. Rev. D 89 (2014) 113003 [arXiv:1404.3608] [INSPIRE].
  69. [69]
    M. Lindner, T. Ohlsson and W. Winter, A Combined treatment of neutrino decay and neutrino oscillations, Nucl. Phys. B 607 (2001) 326 [hep-ph/0103170] [INSPIRE].
  70. [70]
    MINOS collaboration, A. Weber, New results from the MINOS experiment, J. Phys. Conf. Ser. 110 (2008) 082021 [INSPIRE].
  71. [71]
    Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Spontaneously Broken Lepton Number and Cosmological Constraints on the Neutrino Mass Spectrum, Phys. Rev. Lett. 45 (1980) 1926 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    G.B. Gelmini and J.W.F. Valle, Fast Invisible Neutrino Decays, Phys. Lett. 142B (1984) 181 [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [INSPIRE].ADSGoogle Scholar
  74. [74]
    A.G. Dias, A. Doff, C.A. de S. Pires and P.S. Rodrigues da Silva, Neutrino decay and neutrinoless double beta decay in a 3-3-1 model, Phys. Rev. D 72 (2005) 035006 [hep-ph/0503014] [INSPIRE].
  75. [75]
    M. Kachelriess, R. Tomas and J.W.F. Valle, Supernova bounds on Majoron emitting decays of light neutrinos, Phys. Rev. D 62 (2000) 023004 [hep-ph/0001039] [INSPIRE].
  76. [76]
    P.S. Pasquini and O.L.G. Peres, Bounds on Neutrino-Scalar Yukawa Coupling, Phys. Rev. D 93 (2016) 053007 [arXiv:1511.01811] [INSPIRE].
  77. [77]
    KamLAND-Zen collaboration, A. Gando et al., Limits on Majoron-emitting double-beta decays of Xe-136 in the KamLAND-Zen experiment, Phys. Rev. C 86 (2012) 021601 [arXiv:1205.6372] [INSPIRE].
  78. [78]
    M. Agostini et al., Results on ββ decay with emission of two neutrinos or Majorons in 76 Ge from GERDA Phase I, Eur. Phys. J. C 75 (2015) 416 [arXiv:1501.02345] [INSPIRE].
  79. [79]
    S. Hannestad and G. Raffelt, Constraining invisible neutrino decays with the cosmic microwave background, Phys. Rev. D 72 (2005) 103514 [hep-ph/0509278] [INSPIRE].
  80. [80]
    M. Archidiacono and S. Hannestad, Updated constraints on non-standard neutrino interactions from Planck, JCAP 07 (2014) 046 [arXiv:1311.3873] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  82. [82]
    T2K collaboration, K. Abe et al., Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 × 1020 protons on target, Phys. Rev. D 91 (2015) 072010 [arXiv:1502.01550] [INSPIRE].
  83. [83]
    T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].
  84. [84]
    T2K collaboration, K. Iwamoto, Recent Results from T2K and Future Prospects, PoS(ICHEP2016)517.
  85. [85]
    T2K collaboration, L. Magaletti, T2k oscillation results, talk at Neutrino Oscillation Workshop (NOW 2016), Lecce Italy (2016),
  86. [86]
    P. Adamson et al., The NuMI Neutrino Beam, Nucl. Instrum. Meth. A 806 (2016) 279 [arXiv:1507.06690] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    S.V. Cao, Study of antineutrino oscillations using accelerator and atmospheric data in MINOS, Ph.D. Thesis, Texas University, Austin U.S.A. (2014).Google Scholar
  88. [88]
    P. Huber, M. Lindner and W. Winter, Superbeams versus neutrino factories, Nucl. Phys. B 645 (2002) 3 [hep-ph/0204352] [INSPIRE].
  89. [89]
    G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Getting the most from the statistical analysis of solar neutrino oscillations, Phys. Rev. D 66 (2002) 053010 [hep-ph/0206162] [INSPIRE].
  90. [90]
    Daya Bay collaboration, F.P. An et al., Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, Phys. Rev. Lett. 116 (2016) 061801 [arXiv:1508.04233] [INSPIRE].
  91. [91]
    Daya Bay collaboration, F.P. An et al., Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment, Phys. Rev. D 95 (2017) 072006 [arXiv:1610.04802] [INSPIRE].
  92. [92]
    H. Akaike, A new look at the statistical model indentification, IEEE Trans. Autom. Control 19 (1974) 716.ADSCrossRefzbMATHGoogle Scholar
  93. [93]
    C.M. Hurvich and C.-L. Tsai, Regression and time series model selection in small samples, Biometrica 76 (1989) 297.MathSciNetCrossRefzbMATHGoogle Scholar
  94. [94]
    C.W. Kim and W.P. Lam, Some remarks on neutrino decay via a Nambu-Goldstone boson, Mod. Phys. Lett. A 5 (1990) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator, Nucl. Instrum. Meth. A 614 (2010) 87 [arXiv:0905.2517] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    P.A.N. Machado, H. Minakata, H. Nunokawa and R. Zukanovich Funchal, Combining Accelerator and Reactor Measurements of θ 13 : The First Result, JHEP 05 (2012) 023 [arXiv:1111.3330] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    P.A.N. Machado, H. Minakata, H. Nunokawa and R. Zukanovich Funchal, What can we learn about the lepton CP phase in the next 10 years?, JHEP 05 (2014) 109 [arXiv:1307.3248] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    T2K collaboration, M. Ravonel Salzgeber, Anti-neutrino oscillations with T2K, arXiv:1508.06153 [INSPIRE].
  99. [99]
    MINOS collaboration, P. Adamson et al., Neutrino and Antineutrino Inclusive Charged-current Cross Section Measurements with the MINOS Near Detector, Phys. Rev. D 81 (2010) 072002 [arXiv:0910.2201] [INSPIRE].
  100. [100]
    N. Saoulidou, Minos experiment: Oscillation results from the first two years of running, talk at JETP 2007, Fermilab, Batavia U.S.A. (2007),
  101. [101]
    nuSTORM collaboration, P. Kyberd et al., nuSTORM — Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee, arXiv:1206.0294 [INSPIRE].
  102. [102]
    J.L. Hewett et al., Fundamental Physics at the Intensity Frontier, arXiv:1205.2671 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Sección Física, Departamento de CienciasPontificia Universidad Católica del PerúLimaPeru
  2. 2.Instituto de FísicaUniversidade Federal de GoiásGoiâniaBrazil
  3. 3.Instituto de Física Gleb Wataghin, UNICAMPCampinasBrazil

Personalised recommendations