Advertisement

Journal of High Energy Physics

, 2017:12 | Cite as

The conformal BMS group

  • Sasha J. Haco
  • Stephen W. Hawking
  • Malcolm J. Perry
  • Jacob L. Bourjaily
Open Access
Regular Article - Theoretical Physics

Abstract

We describe the conformal symmetries of asymptotically flat spacetime. These represent an extension of the BMS group that we call the conformal BMS group. Its general features are discussed.

Keywords

Space-Time Symmetries Gauge Symmetry Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].
  2. [2]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity, 7: waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Penrose, Asymptotic properties of fields and space-times, Phys. Rev. Lett. 10 (1963) 66 [INSPIRE].
  4. [4]
    E.T. Newman and R. Penrose, Note on the Bondi-Metzner-Sachs group, J. Math. Phys. 7 (1966) 863 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS(CNCFG2010)010 [Ann. U. Craiova Phys. 21 (2011) S11] [arXiv:1102.4632] [INSPIRE].
  6. [6]
    G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and supertranslation hair on black holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G. Compère and J. Long, Classical static final state of collapse with supertranslation memory, Class. Quant. Grav. 33 (2016) 195001 [arXiv:1602.05197] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    R.M. Wald and A. Zoupas, A general definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].
  11. [11]
    G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].
  12. [12]
    É. É. Flanagan and D.A. Nichols, Conserved charges of the extended Bondi-Metzner-Sachs algebra, Phys. Rev. D 95 (2017) 044002 [arXiv:1510.03386] [INSPIRE].
  13. [13]
    D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity S-matrix, JHEP 08 (2014) 058 [arXiv:1406.3312] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    V. Lysov, S. Pasterski and A. Strominger, Low’s subleading soft theorem as a symmetry of QED, Phys. Rev. Lett. 113 (2014) 111601 [arXiv:1407.3814] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F.E. Low, Scattering of light of very low frequency by systems of spin 1/2, Phys. Rev. 96 (1954) 1428 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].
  21. [21]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Penrose, Zero rest mass fields including gravitation: asymptotic behavior, Proc. Roy. Soc. Lond. A 284 (1965) 159 [INSPIRE].
  23. [23]
    L. Borsten and M.J. Duff, Gravity as the square of Yang-Mills?, Phys. Scripta 90 (2015) 108012 [arXiv:1602.08267] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C. Duval, G.W. Gibbons and P.A. Horvathy, Conformal Carroll groups and BMS symmetry, Class. Quant. Grav. 31 (2014) 092001 [arXiv:1402.5894] [INSPIRE].
  25. [25]
    C. Duval, G.W. Gibbons and P.A. Horvathy, Conformal Carroll groups, J. Phys. A 47 (2014) 335204 [arXiv:1403.4213] [INSPIRE].
  26. [26]
    M.A. Awada, G.W. Gibbons and W.T. Shaw, Conformal supergravity, twistors and the super BMS group, Annals Phys. 171 (1986) 52 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Irakleidou and I. Lovrekovic, Asymptotic symmetry algebra of conformal gravity, arXiv:1611.01810 [INSPIRE].
  28. [28]
    E. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3 (1962) 566 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    G. Compère and J. Long, Vacua of the gravitational field, JHEP 07 (2016) 137 [arXiv:1601.04958] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    A. Strominger, Asymptotic symmetries of Yang-Mills theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091 [INSPIRE].
  32. [32]
    C. Cheung, A. de la Fuente and R. Sundrum, 4D scattering amplitudes and asymptotic symmetries from 2D CFT, JHEP 01 (2017) 112 [arXiv:1609.00732] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Sasha J. Haco
    • 1
  • Stephen W. Hawking
    • 1
  • Malcolm J. Perry
    • 1
  • Jacob L. Bourjaily
    • 2
  1. 1.Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical SciencesUniversity of CambridgeCambridgeU.K.
  2. 2.Niels Bohr International Academy and Discovery CenterUniversity of Copenhagen, The Niels Bohr InstituteCopenhagen ØDenmark

Personalised recommendations