NNLO QCD corrections for Drell-Yan p T Z and \( {\phi}_{{}^{\eta}}^{\ast } \) observables at the LHC
- 77 Downloads
- 11 Citations
Abstract
Drell-Yan lepton pairs with finite transverse momentum are produced when the vector boson recoils against (multiple) parton emission(s), and is determined by QCD dynamics. At small transverse momentum, the fixed order predictions break down due to the emergence of large logarithmic contributions. This region can be studied via the p T Z distribution constructed from the energies of the leptons, or through the \( {\phi}_{{}^{\eta}}^{\ast } \) distribution that relies on the directions of the leptons. For sufficiently small transverse momentum, the \( {\phi}_{{}^{\eta}}^{\ast } \) observable can be measured experimentally with better resolution. We study the small p T Z and \( {\phi}_{{}^{\eta}}^{\ast } \) distributions up to next-to-next-to-leading order (NNLO) in perturbative QCD. We compute the \( {\phi}_{{}^{\eta}}^{\ast } \) distributions for the fully inclusive production of lepton pairs via Z/γ∗ to NNLO and normalise them to the NNLO cross sections for inclusive Z/γ∗ production. We compare our predictions with the \( {\phi}_{{}^{\eta}}^{\ast } \) distribution measured by the ATLAS collaboration during LHC operation at 8 TeV. We find that at moderate to large values of \( {\phi}_{{}^{\eta}}^{\ast } \), the NNLO effects are positive and lead to a substantial improvement in the theory-data comparison compared to next-to-leading order (NLO). At small values of p T Z and \( {\phi}_{{}^{\eta}}^{\ast } \) , the known large logarithmic enhancements emerge through and we identify the region where resummation is needed. We find an approximate relationship between the values of p T Z and \( {\phi}_{{}^{\eta}}^{\ast } \) where the large logarithms emerge and find perturbative consistency between the two observables.
Keywords
QCD PhenomenologyNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
- [1]ATLAS collaboration, Measurement of the Z/γ ∗ boson transverse momentum distribution in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 09 (2014) 145 [arXiv:1406.3660] [INSPIRE].
- [2]ATLAS collaboration, Measurement of the transverse momentum and \( {\phi}_{{}^{\eta}}^{\ast } \) distributions of Drell-Yan lepton pairs in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 291 [arXiv:1512.02192] [INSPIRE].
- [3]CMS collaboration, Measurement of the rapidity and transverse momentum distributions of Z bosons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 85 (2012) 032002 [arXiv:1110.4973] [INSPIRE].
- [4]CMS collaboration, Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV, Phys. Lett. B 749 (2015) 187 [arXiv:1504.03511] [INSPIRE].
- [5]LHCb collaboration, Measurement of the forward Z boson production cross-section in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 08 (2015) 039 [arXiv:1505.07024] [INSPIRE].
- [6]LHCb collaboration, Measurement of forward W and Z boson production in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 01(2016) 155 [arXiv:1511.08039] [INSPIRE].
- [7]R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α s2 correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [INSPIRE].
- [8]W.L. van Neerven and E.B. Zijlstra, The O(α s2) corrected Drell-Yan K factor in the DIS and MS scheme, Nucl. Phys. B 382 (1992) 11 [Erratum ibid. B 680 (2004) 513] [INSPIRE].
- [9]C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [INSPIRE].
- [10]K. Melnikov and F. Petriello, The W boson production cross section at the LHC through O(α s2), Phys. Rev. Lett. 96 (2006) 231803 [hep-ph/0603182] [INSPIRE].
- [11]K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through O(α s2), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].
- [12]S. Catani, G. Ferrera and M. Grazzini, W boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD, JHEP 05 (2010) 006 [arXiv:1002.3115] [INSPIRE].ADSCrossRefGoogle Scholar
- [13]S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].ADSCrossRefGoogle Scholar
- [14]R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE].ADSCrossRefGoogle Scholar
- [15]C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].
- [16]J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].ADSCrossRefGoogle Scholar
- [17]G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Transverse-momentum resummation: a perturbative study of Z production at the Tevatron, Nucl. Phys. B 815 (2009) 174 [arXiv:0812.2862] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [18]G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Production of Drell-Yan lepton pairs in hadron collisions: Transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy, Phys. Lett. B 696 (2011) 207 [arXiv:1007.2351] [INSPIRE].ADSCrossRefGoogle Scholar
- [19]T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].ADSCrossRefGoogle Scholar
- [20]A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, The NNLO QCD corrections to Z boson production at large transverse momentum, JHEP 07 (2016) 133 [arXiv:1605.04295] [INSPIRE].ADSCrossRefGoogle Scholar
- [21]A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, Precise QCD predictions for the production of a Z boson in association with a hadronic jet, Phys. Rev. Lett. 117 (2016) 022001 [arXiv:1507.02850] [INSPIRE].ADSCrossRefGoogle Scholar
- [22]A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, NNLO QCD corrections for Z boson plus jet production, arXiv:1601.04569 [INSPIRE].
- [23]A. Banfi, S. Redford, M. Vesterinen, P. Waller and T.R. Wyatt, Optimisation of variables for studying dilepton transverse momentum distributions at hadron colliders, Eur. Phys. J. C 71 (2011) 1600 [arXiv:1009.1580] [INSPIRE].ADSCrossRefGoogle Scholar
- [24]D0 collaboration, V.M. Abazov et al., Precise study of the Z/γ ∗ boson transverse momentum distribution in pp collisions using a novel technique, Phys. Rev. Lett. 106 (2011) 122001 [arXiv:1010.0262] [INSPIRE].
- [25]ATLAS collaboration, Measurement of angular correlations in Drell-Yan lepton pairs to probe Z/γ ∗ boson transverse momentum at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 720 (2013) 32 [arXiv:1211.6899] [INSPIRE].
- [26]LHCb collaboration, Measurement of the forward Z boson production cross-section in pp collisions at \( \sqrt{s}=13 \) TeV, JHEP 09 (2016) 136 [arXiv:1607.06495] [INSPIRE].
- [27]C. Balázs and C.P. Yuan, Soft gluon effects on lepton pairs at hadron colliders, Phys. Rev. D 56 (1997) 5558 [hep-ph/9704258] [INSPIRE].
- [28]M. Guzzi, P.M. Nadolsky and B. Wang, Nonperturbative contributions to a resummed leptonic angular distribution in inclusive neutral vector boson production, Phys. Rev. D 90 (2014) 014030 [arXiv:1309.1393] [INSPIRE].ADSGoogle Scholar
- [29]A. Banfi, M. Dasgupta, S. Marzani and L. Tomlinson, Predictions for Drell-Yan ϕ ∗ and Q T observables at the LHC, Phys. Lett. B 715 (2012) 152 [arXiv:1205.4760] [INSPIRE].ADSCrossRefGoogle Scholar
- [30]S. Catani, D. de Florian, G. Ferrera and M. Grazzini, Vector boson production at hadron colliders: transverse-momentum resummation and leptonic decay, JHEP 12 (2015) 047 [arXiv:1507.06937] [INSPIRE].ADSCrossRefGoogle Scholar
- [31]S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [32]T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
- [33]T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
- [34]S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].
- [35]M. Vesterinen and T.R. Wyatt, A novel technique for studying the Z boson transverse momentum distribution at hadron colliders, Nucl. Instrum. Meth. A 602 (2009) 432 [arXiv:0807.4956] [INSPIRE].ADSCrossRefGoogle Scholar
- [36]A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].
- [37]A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B 612 (2005) 49 [hep-ph/0502110] [INSPIRE].
- [38]A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Quark-gluon antenna functions from neutralino decay, Phys. Lett. B 612 (2005) 36 [hep-ph/0501291] [INSPIRE].
- [39]A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].
- [40]A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [41]T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12 (2011) 049 [arXiv:1107.4037] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [42]R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02 (2011) 098 [arXiv:1011.6631] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [43]A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP 10 (2012) 047 [arXiv:1207.5779] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [44]J. Currie, E.W.N. Glover and S. Wells, Infrared structure at NNLO using antenna subtraction, JHEP 04 (2013) 066 [arXiv:1301.4693] [INSPIRE].ADSCrossRefGoogle Scholar
- [45]A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Infrared structure of e + e − → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].ADSCrossRefGoogle Scholar
- [46]A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, EERAD3: event shapes and jet rates in electron-positron annihilation at order α s3, Comput. Phys. Commun. 185 (2014) 3331 [arXiv:1402.4140] [INSPIRE].ADSCrossRefGoogle Scholar
- [47]A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and J. Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution, Phys. Rev. Lett. 110 (2013) 162003 [arXiv:1301.7310] [INSPIRE].ADSCrossRefGoogle Scholar
- [48]J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover and J. Pires, NNLO QCD corrections to jet production at hadron colliders from gluon scattering, JHEP 01 (2014) 110 [arXiv:1310.3993] [INSPIRE].ADSCrossRefGoogle Scholar
- [49]X. Chen, T. Gehrmann, E.W.N. Glover and M. Jaquier, Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett. B 740 (2015) 147 [arXiv:1408.5325] [INSPIRE].ADSCrossRefGoogle Scholar
- [50]X. Chen, J. Cruz-Martinez, T. Gehrmann, E.W.N. Glover and M. Jaquier, NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP 10 (2016) 066 [arXiv:1607.08817] [INSPIRE].ADSCrossRefGoogle Scholar
- [51]G. Abelof, A. Gehrmann-De Ridder and I. Majer, Top quark pair production at NNLO in the quark-antiquark channel, JHEP 12 (2015) 074 [arXiv:1506.04037] [INSPIRE].ADSCrossRefGoogle Scholar
- [52]J. Currie, T. Gehrmann and J. Niehues, Precise QCD predictions for the production of dijet final states in deep inelastic scattering, Phys. Rev. Lett. 117 (2016) 042001 [arXiv:1606.03991] [INSPIRE].ADSCrossRefGoogle Scholar
- [53]A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, Z+jet production at NNLO, PoS (LL2016) 056 [arXiv:1607.01749] [INSPIRE].
- [54]NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
- [55]S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Vector boson production at hadron colliders: hard-collinear coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2195 [arXiv:1209.0158] [INSPIRE].ADSCrossRefGoogle Scholar
- [56]G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].
- [57]A. Banfi, M. Dasgupta and S. Marzani, QCD predictions for new variables to study dilepton transverse momenta at hadron colliders, Phys. Lett. B 701 (2011) 75 [arXiv:1102.3594] [INSPIRE].ADSCrossRefGoogle Scholar
- [58]A. Banfi, M. Dasgupta and R.M. Duran Delgado, The a T distribution of the Z boson at hadron colliders, JHEP 12 (2009) 022 [arXiv:0909.5327] [INSPIRE].ADSCrossRefGoogle Scholar
Copyright information
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.