Advertisement

Journal of High Energy Physics

, 2019:288 | Cite as

Phases of flavor broken QCD3

  • Andrew BaumgartnerEmail author
Open Access
Regular Article - Theoretical Physics
  • 5 Downloads

Abstract

We map out the phase diagram of QCD3 with a product flavor group of the form U(f ) × U(F ). We find interesting structures emerge when f + F > k depending on the relative sizes of f, F and k. In particular, there exists phase transitions in which a Grassmannian phase will disappear and reappear in a different part of the phase diagram.

Keywords

Chern-Simons Theories Field Theories in Lower Dimensions Sigma Models Spontaneous Symmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    D.T. Son, Is the composite fermion a Dirac particle?, Phys. Rev.X 5 (2015) 031027 [arXiv:1502.03446] [INSPIRE].
  2. [2]
    S. Minwalla and S. Yokoyama, Chern Simons bosonization along RG flows, JHEP02 (2016) 103 [arXiv:1507.04546] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons theory with vector fermion matter, Eur. Phys. J.C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 bosonic vector models coupled to Chern-Simons gauge theories, JHEP03 (2012) 037 [arXiv:1110.4382] [INSPIRE].
  5. [5]
    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation functions of large N Chern-Simons-matter theories and bosonization in three dimensions, JHEP12 (2012) 028 [arXiv:1207.4593] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S.R. Wadia and S. Yokoyama, Unitarity, crossing symmetry and duality of the S-matrix in large N Chern-Simons theories with fundamental matter, JHEP04 (2015) 129 [arXiv:1404.6373] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP09 (2010) 115 [arXiv:0912.3462] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    S. Giombi and X. Yin, The higher spin/vector model duality, J. Phys.A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Nonsupersymmetric dualities from mirror symmetry, Phys. Rev. Lett.118 (2017) 011602 [arXiv:1609.02149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    G. Gur-Ari and R. Yacoby, Three dimensional bosonization from supersymmetry, JHEP11 (2015) 013 [arXiv:1507.04378] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP02 (2016) 093 [arXiv:1512.00161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    P.-S. Hsin and N. Seiberg, Level/rank duality and Chern-Simons-matter theories, JHEP09 (2016) 095 [arXiv:1607.07457] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    F. Benini, P.-S. Hsin and N. Seiberg, Comments on global symmetries, anomalies and duality in (2 + 1)d, JHEP04 (2017) 135 [arXiv:1702.07035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    K. Aitken, A. Karch and B. Robinson, Master 3d bosonization duality with boundaries, JHEP05 (2018) 124 [arXiv:1803.08507] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    K. Aitken, A. Baumgartner, A. Karch and B. Robinson, 3d Abelian dualities with boundaries, JHEP03 (2018) 053 [arXiv:1712.02801] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    K. Jensen and A. Karch, Embedding three-dimensional bosonization dualities into string theory, JHEP12 (2017) 031 [arXiv:1709.07872] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    J.-Y. Chen and M. Zimet, Strong-weak Chern-Simons-matter dualities from a lattice construction, JHEP08 (2018) 015 [arXiv:1806.04141] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    J.H. Son, J.-Y. Chen and S. Raghu, Duality web on a 3D Euclidean lattice and manifestation of hidden symmetries, JHEP06 (2019) 038 [arXiv:1811.11367] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    J.-Y. Chen, J.H. Son, C. Wang and S. Raghu, Exact boson-fermion duality on a 3D Euclidean lattice, Phys. Rev. Lett.120 (2018) 016602 [arXiv:1705.05841] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Appelquist and D. Nash, Critical behavior in (2 + 1)-dimensional QCD, Phys. Rev. Lett.64 (1990) 721 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Z. Komargodski and N. Seiberg, A symmetry breaking scenario for QCD 3 , JHEP01 (2018) 109 [arXiv:1706.08755] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Sharon, QCD 3dualities and the F-theorem, JHEP08 (2018) 078 [arXiv:1803.06983] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    R. Argurio, M. Bertolini, F. Mignosa and P. Niro, Charting the phase diagram of QCD 3, JHEP08 (2019) 153 [arXiv:1905.01460] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys.88 (2016) 035001 [arXiv:1508.04715] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    F. Benini, Three-dimensional dualities with bosons and fermions, JHEP02 (2018) 068 [arXiv:1712.00020] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    K. Jensen, A master bosonization duality, JHEP01 (2018) 031 [arXiv:1712.04933] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    C. Vafa and E. Witten, Eigenvalue inequalities for fermions in gauge theories, Commun. Math. Phys.95 (1984) 257 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    A. Armoni, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Metastable vacua in large-N QCD 3, arXiv:1905.01797 [INSPIRE].
  29. [29]
    K. Aitken, A. Baumgartner and A. Karch, Novel 3d bosonic dualities from bosonization and holography, JHEP09 (2018) 003 [arXiv:1807.01321] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    K. Aitken, A. Baumgartner, C. Choi and A. Karch, Generalization of QCD 3symmetry breaking and flavored quiver dualities, in preparation.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WashingtonSeattleU.S.A.

Personalised recommendations