Advertisement

Journal of High Energy Physics

, 2019:285 | Cite as

Fracture functions in different kinematic regions and their factorizations

  • X. P. Chai
  • K. B. Chen
  • J. P. MaEmail author
  • X. B. Tong
Open Access
Regular Article - Theoretical Physics
  • 30 Downloads

Abstract

Fracture functions are parton distributions of an initial hadron in the presence of an almost collinear particle observed in the final state. They are important ingredients in QCD factorization for processes where a particle is produced diffractively. There are different fracture functions for a process in different kinematic regions. We take the production of a lepton pair combined with a diffractively produced particle in hadron collisions to discuss this. Those fracture functions can be factorized further if there are large energy scales involved. We perform one-loop calculations to illustrate the factorization in the case with the diffractively produced particle as a real photon. Evolution equations of different fracture functions are derived from our explicit calculations. They agree with expectations. These equations can be used for resummations of large log terms in perturbative expansions.

Keywords

Perturbative QCD Resummation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    L. Trentadue and G. Veneziano, Fracture functions: An Improved description of inclusive hard processes in QCD, Phys. Lett. B 323 (1994) 201 [INSPIRE].
  2. [2]
    ZEUS collaboration, Observation of events with a large rapidity gap in deep inelastic scattering at HERA, Phys. Lett. B 315 (1993) 481 [INSPIRE].
  3. [3]
    D. Graudenz, One-particle inclusive processes in deeply inelastic lepton-nucleon scattering, Nucl. Phys. B 432 (1994) 351 [hep-ph/9406274] [INSPIRE].
  4. [4]
    H1 collaboration, Measurement and QCD analysis of the diffractive deep-inelastic scattering cross-section at HERA, Eur. Phys. J. C 48 (2006) 715 [hep-ex/0606004] [INSPIRE].
  5. [5]
    M. Goharipour, H. Khanpour and V. Guzey, First global next-to-leading order determination of diffractive parton distribution functions and their uncertainties within the xFitter framework, Eur. Phys. J. C 78 (2018) 309 [arXiv:1802.01363] [INSPIRE].
  6. [6]
    F.A. Ceccopieri and L. Trentadue, Semi-inclusive Drell-Yan Process as a Factorization Analyzer, Phys. Lett. B 668 (2008) 319 [arXiv:0805.3467] [INSPIRE].
  7. [7]
    F.A. Ceccopieri, Associated production of one particle and a Drell-Yan pair in hadronic collisions, Phys. Lett. B 703 (2011) 491 [arXiv:1012.0507] [INSPIRE].
  8. [8]
    A. Berera and D.E. Soper, Behavior of diffractive parton distribution functions, Phys. Rev. D 53 (1996) 6162 [hep-ph/9509239] [INSPIRE].
  9. [9]
    M. Anselmino, V. Barone and A. Kotzinian, SIDIS in the target fragmentation region: Polarized and transverse momentum dependent fracture functions, Phys. Lett. B 699 (2011) 108 [arXiv:1102.4214] [INSPIRE].
  10. [10]
    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].
  11. [11]
    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization for Short Distance Hadron-Hadron Scattering, Nucl. Phys. B 261 (1985) 104 [INSPIRE].
  12. [12]
    J.C. Collins, L. Frankfurt and M. Strikman, Diffractive hard scattering with a coherent Pomeron, Phys. Lett. B 307 (1993) 161 [hep-ph/9212212] [INSPIRE].
  13. [13]
    J.C. Collins, Proof of factorization for diffractive hard scattering, Phys. Rev. D 57 (1998) 3051 [Erratum ibid. D 61 (2000) 019902] [hep-ph/9709499] [INSPIRE].
  14. [14]
    X.D. Ji, J.P. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE].
  15. [15]
    X.D. Ji, J.P. Ma and F. Yuan, QCD factorization for spin-dependent cross sections in DIS and Drell-Yan processes at low transverse momentum, Phys. Lett. B 597 (2004) 299 [hep-ph/0405085] [INSPIRE].
  16. [16]
    J.P. Ma and G.P. Zhang, QCD Corrections of All Structure Functions in Transverse Momentum Dependent Factorization for Drell-Yan Processes, JHEP 02 (2014) 100 [arXiv:1308.2044] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Collins, Foundations of Perturbative QCD, Cambridge University Press, Cambridge U.K. (2011).Google Scholar
  18. [18]
    J.C. Collins, New definition of TMD parton densities, Int. J. Mod. Phys. Conf. Ser. 4 (2011) 85 [arXiv:1107.4123] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization Theorem For Drell-Yan At Low qT And Transverse Momentum Distributions On-The-Light-Cone, JHEP 07 (2012) 002 [arXiv:1111.4996] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    P. Sun and F. Yuan, Transverse momentum dependent evolution: Matching semi-inclusive deep inelastic scattering processes to Drell-Yan and W/Z boson production, Phys. Rev. D 88 (2013) 114012 [arXiv:1308.5003] [INSPIRE].
  22. [22]
    M.G. Echevarria, I. Scimemi and A. Vladimirov, Universal transverse momentum dependent soft function at NNLO, Phys. Rev. D 93 (2016) 054004 [arXiv:1511.05590] [INSPIRE].
  23. [23]
    M.G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized Transverse Momentum Dependent Parton Distribution and Fragmentation Functions at next-to-next-to-leading order, JHEP 09 (2016) 004 [arXiv:1604.07869] [INSPIRE].
  24. [24]
    J.C. Collins and T.C. Rogers, Equality of Two Definitions for Transverse Momentum Dependent Parton Distribution Functions, Phys. Rev. D 87 (2013) 034018 [arXiv:1210.2100] [INSPIRE].
  25. [25]
    J.C. Collins and D.E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194 (1982) 445 [INSPIRE].
  26. [26]
    Y. Li and H.X. Zhu, Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation, Phys. Rev. Lett. 118 (2017) 022004 [arXiv:1604.01404] [INSPIRE].
  27. [27]
    A. Vladimirov, Correspondence between Soft and Rapidity Anomalous Dimensions, Phys. Rev. Lett. 118 (2017) 062001 [arXiv:1610.05791] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • X. P. Chai
    • 1
    • 2
  • K. B. Chen
    • 1
    • 2
  • J. P. Ma
    • 1
    • 2
    • 3
    Email author
  • X. B. Tong
    • 1
    • 2
  1. 1.Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.School of Physics and Center for High-Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations