Advertisement

Journal of High Energy Physics

, 2019:281 | Cite as

Catalytic creation of baby bubble universe with small positive cosmological constant

  • Issei Koga
  • Yutaka OokouchiEmail author
Open Access
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract

We investigate the decay of metastable de Sitter, Minkowski and anti-de Sitter vacua catalyzed by a black hole and a cloud of strings. We apply the method to the creation of the four dimensional bubble universe in the five dimensional anti-de Sitter spacetime recently proposed by Banerjee, Danielsson, Dibitetto, Giri and Schillo [1, 2]. We study the bounce action for the creation and find that the bubble with very small cosmological constant, of order Λ(4)/\( {M}_4^4 \) 10120, is favored by the catalysis by assuming appropriate mass scales of the black hole and the cloud of strings to reproduce the present energy densities of matter and radiation in the bubble universe.

Keywords

Phenomenology of Field Theories in Higher Dimensions Strings and branes phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S. Banerjee, U. Danielsson, G. Dibitetto, S. Giri and M. Schillo, de Sitter Cosmology on an expanding bubble, arXiv:1907.04268 [INSPIRE].
  2. [2]
    S. Banerjee, U. Danielsson, G. Dibitetto, S. Giri and M. Schillo, Emergent de Sitter Cosmology from Decaying Anti-de Sitter Space, Phys. Rev. Lett.121 (2018) 261301 [arXiv:1807.01570] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Gorsky, A. Mironov, A. Morozov and T.N. Tomaras, Is the Standard Model saved asymptotically by conformal symmetry?, J. Exp. Theor. Phys.120 (2015) 344 [arXiv:1409.0492] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F. Bezrukov and M. Shaposhnikov, Why should we care about the top quark Yukawa coupling?, J. Exp. Theor. Phys.120 (2015) 335 [arXiv:1411.1923] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Ellis, Discrete Glimpses of the Physics Landscape after the Higgs Discovery, J. Phys. Conf. Ser.631 (2015) 012001 [arXiv:1501.05418] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    K. Blum, R.T. D’Agnolo and J. Fan, Vacuum stability bounds on Higgs coupling deviations in the absence of new bosons, JHEP03 (2015) 166 [arXiv:1502.01045] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    M.S. Turner and F. Wilczek, Might our vacuum be metastable?, Nature298 (1982) 633 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Kitano, H. Ooguri and Y. Ookouchi, Supersymmetry Breaking and Gauge Mediation, Ann. Rev. Nucl. Part. Sci.60 (2010) 491 [arXiv:1001.4535] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Y. Ookouchi, Light Gaugino Problem in Direct Gauge Mediation, Int. J. Mod. Phys.A 26 (2011) 4153 [arXiv:1107.2622] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  11. [11]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP06 (2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev.D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  13. [13]
    L. Susskind, The Anthropic landscape of string theory, hep-th/0302219 [INSPIRE].
  14. [14]
    S. Ashok and M.R. Douglas, Counting flux vacua, JHEP01 (2004) 060 [hep-th/0307049] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    C. Vafa, The String landscape and the swampland, hep-th/0509212 [INSPIRE].
  16. [16]
    H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    H. Ooguri and C. Vafa, Non-supersymmetric AdS and the Swampland, Adv. Theor. Math. Phys.21 (2017) 1787 [arXiv:1610.01533] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
  19. [19]
    S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, arXiv:1807.05193 [INSPIRE].
  20. [20]
    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett.B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    H. Murayama, M. Yamazaki and T.T. Yanagida, Do We Live in the Swampland?, JHEP12 (2018) 032 [arXiv:1809.00478] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    R. Kallosh, Gaugino Condensation and Geometry of the Perfect Square, Phys. Rev.D 99 (2019) 066003 [arXiv:1901.02023] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    J. Moritz, A. Retolaza and A. Westphal, Toward de Sitter space from ten dimensions, Phys. Rev.D 97 (2018) 046010 [arXiv:1707.08678] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    F.F. Gautason, V. Van Hemelryck and T. Van Riet, The Tension between 10D Supergravity and dS Uplifts, Fortsch. Phys.67 (2019) 1800091 [arXiv:1810.08518] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    I. Bena, M. Graña and N. Halmagyi, On the Existence of Meta-stable Vacua in Klebanov-Strassler, JHEP09 (2010) 087 [arXiv:0912.3519] [INSPIRE].
  26. [26]
    I. Bena, M. Graña, S. Kuperstein and S. Massai, Giant Tachyons in the Landscape, JHEP02 (2015) 146 [arXiv:1410.7776] [INSPIRE].
  27. [27]
    D. Cohen-Maldonado, J. Diaz, T. van Riet and B. Vercnocke, Observations on fluxes near anti-branes, JHEP01 (2016) 126 [arXiv:1507.01022] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    J. Moritz and T. Van Riet, Racing through the swampland: de Sitter uplift vs weak gravity, JHEP09 (2018) 099 [arXiv:1805.00944] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    M. Cicoli, S. De Alwis, A. Maharana, F. Muia and F. Quevedo, de Sitter vs Quintessence in String Theory, Fortsch. Phys.67 (2019) 1800079 [arXiv:1808.08967] [INSPIRE].
  30. [30]
    S. Kachru and S.P. Trivedi, A comment on effective field theories of flux vacua, Fortsch. Phys.67 (2019) 1800086 [arXiv:1808.08971] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    R. Kallosh and T. Wrase, dS Supergravity from 10d, Fortsch. Phys.67 (2019) 1800071 [arXiv:1808.09427] [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    J. Moritz, A. Retolaza and A. Westphal, On uplifts by warped anti-D3-branes, Fortsch. Phys.67 (2019) 1800098 [arXiv:1809.06618] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    I. Bena, E. Dudas, M. Graña and S. Lüst, Uplifting Runaways, Fortsch. Phys.67 (2019) 1800100 [arXiv:1809.06861] [INSPIRE].
  34. [34]
    R. Kallosh, A. Linde, E. McDonough and M. Scalisi, 4D models of de Sitter uplift, Phys. Rev.D 99 (2019) 046006 [arXiv:1809.09018] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a nonsupersymmetric field theory, JHEP06 (2002) 021 [hep-th/0112197] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Y. Hamada, A. Hebecker, G. Shiu and P. Soler, On brane gaugino condensates in 10d, JHEP04 (2019) 008 [arXiv:1812.06097] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    Y. Hamada, A. Hebecker, G. Shiu and P. Soler, Understanding KKLT from a 10d perspective, JHEP06 (2019) 019 [arXiv:1902.01410] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    F.F. Gautason, V. Van Hemelryck, T. Van Riet and G. Venken, A 10d view on the KKLT AdS vacuum and uplifting, arXiv:1902.01415 [INSPIRE].
  39. [39]
    F. Carta, J. Moritz and A. Westphal, Gaugino condensation and small uplifts in KKLT, JHEP08 (2019) 141 [arXiv:1902.01412] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Kachru, M. Kim, L. McAllister and M. Zimet, de Sitter Vacua from Ten Dimensions, arXiv:1908.04788 [INSPIRE].
  41. [41]
    J. Armas, N. Nguyen, V. Niarchos, N.A. Obers and T. Van Riet, Meta-stable non-extremal anti-branes, Phys. Rev. Lett.122 (2019) 181601 [arXiv:1812.01067] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. Cohen-Maldonado, J. Diaz and F.F. Gautason, Polarised antibranes from Smarr relations, JHEP05 (2016) 175 [arXiv:1603.05678] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    B. Michel, E. Mintun, J. Polchinski, A. Puhm and P. Saad, Remarks on brane and antibrane dynamics, JHEP09 (2015) 021 [arXiv:1412.5702] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    E. Palti, The Swampland: Introduction and Review, Fortsch. Phys.67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  45. [45]
    T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland and the Missing Corner, PoS(TASI2017)015 (2017) [arXiv:1711.00864] [INSPIRE].
  46. [46]
    U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys.D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    Y. Akrami, R. Kallosh, A. Linde and V. Vardanyan, The Landscape, the Swampland and the Era of Precision Cosmology, Fortsch. Phys.67 (2019) 1800075 [arXiv:1808.09440] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  49. [49]
    L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett.83 (1999) 4690 [hep-th/9906064] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    S. Chakrabortty, Dissipative force on an external quark in heavy quark cloud, Phys. Lett.B 705 (2011) 244 [arXiv:1108.0165] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    P.S. Letelier, Clouds of strings in general relativity, Phys. Rev.D 20 (1979) 1294 [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    J. Stachel, Thickening the string. I. The string perfect dust, Phys. Rev.D 21 (1980) 2171 [INSPIRE].
  53. [53]
    S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev.D 15 (1977) 2929 [Erratum ibid.D 16 (1977) 1248] [INSPIRE].
  54. [54]
    C.G. Callan Jr. and S.R. Coleman, The Fate of the False Vacuum. 2. First Quantum Corrections, Phys. Rev.D 16 (1977) 1762 [INSPIRE].
  55. [55]
    S.R. Coleman and F. De Luccia, Gravitational Effects on and of Vacuum Decay, Phys. Rev.D 21 (1980) 3305 [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    P.J. Steinhardt, Monopole and Vortex Dissociation and Decay of the False Vacuum, Nucl. Phys.B 190 (1981) 583 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    P.J. Steinhardt, Monopole Dissociation in the Early Universe, Phys. Rev.D 24 (1981) 842 [INSPIRE].ADSGoogle Scholar
  58. [58]
    Y. Hosotani, Impurities in the Early Universe, Phys. Rev.D 27 (1983) 789 [INSPIRE].ADSGoogle Scholar
  59. [59]
    U.A. Yajnik, Phase transition induced by cosmic strings, Phys. Rev.D 34 (1986) 1237 [INSPIRE].ADSMathSciNetGoogle Scholar
  60. [60]
    B.-H. Lee, W. Lee, R. MacKenzie, M.B. Paranjape, U.A. Yajnik and D.-h. Yeom, Tunneling decay of false vortices, Phys. Rev.D 88 (2013) 085031 [arXiv:1308.3501] [INSPIRE].ADSzbMATHGoogle Scholar
  61. [61]
    B. Kumar, M.B. Paranjape and U.A. Yajnik, Fate of the false monopoles: Induced vacuum decay, Phys. Rev.D 82 (2010) 025022 [arXiv:1006.0693] [INSPIRE].ADSGoogle Scholar
  62. [62]
    B. Kumar and U. Yajnik, Graceful exit via monopoles in a theory with O’Raifeartaigh type supersymmetry breaking, Nucl. Phys.B 831 (2010) 162 [arXiv:0908.3949] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  63. [63]
    B. Kumar and U.A. Yajnik, On stability of false vacuum in supersymmetric theories with cosmic strings, Phys. Rev.D 79 (2009) 065001 [arXiv:0807.3254] [INSPIRE].ADSGoogle Scholar
  64. [64]
    T. Hiramatsu, M. Eto, K. Kamada, T. Kobayashi and Y. Ookouchi, Instability of colliding metastable strings, JHEP01 (2014) 165 [arXiv:1304.0623] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    K. Kamada, T. Kobayashi, K. Ohashi and Y. Ookouchi, Cosmic R-string in thermal history, JHEP05 (2013) 091 [arXiv:1303.2740] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    M. Eto, Y. Hamada, K. Kamada, T. Kobayashi, K. Ohashi and Y. Ookouchi, Cosmic R-string, R-tube and Vacuum Instability, JHEP03 (2013) 159 [arXiv:1211.7237] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A. Kasai and Y. Ookouchi, Decay of False Vacuum via Fuzzy Monopole in String Theory, Phys. Rev.D 91 (2015) 126002 [arXiv:1502.01544] [INSPIRE].ADSGoogle Scholar
  68. [68]
    A. Kasai and Y. Ookouchi, Gravitational Correction to Fuzzy String in Metastable Brane Configuration, JHEP06 (2015) 098 [arXiv:1504.00479] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. [69]
    A. Kasai, Y. Nakai and Y. Ookouchi, Baryon as Impurity for Phase Transition in String Landscape, JHEP06 (2016) 029 [arXiv:1508.04608] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    Y. Nakai and Y. Ookouchi, Thermal Effects on Decays of a Metastable Brane Configuration, Phys. Lett.B 762 (2016) 321 [arXiv:1608.01232] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    Y. Nakai, Y. Ookouchi and N. Tanahashi, Dyonic catalysis in the Kachru-Pearson-Verlinde vacuum decay, Phys. Rev.D 100 (2019) 086013 [arXiv:1808.10235] [INSPIRE].ADSGoogle Scholar
  72. [72]
    W.A. Hiscock, Can black holes nucleate vacuum phase transitions?, Phys. Rev.D 35 (1987) 1161 [INSPIRE].ADSMathSciNetGoogle Scholar
  73. [73]
    V.A. Berezin, V.A. Kuzmin and I.I. Tkachev, O(3) Invariant Tunneling in General Relativity, Phys. Lett.B 207 (1988) 397 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    R. Gregory, I.G. Moss and B. Withers, Black holes as bubble nucleation sites, JHEP03 (2014) 081 [arXiv:1401.0017] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  75. [75]
    I.G. Moss, Black hole bubbles, Phys. Rev.D 32 (1985) 1333 [INSPIRE].
  76. [76]
    N. Oshita and J. Yokoyama, Creation of an inflationary universe out of a black hole, Phys. Lett.B 785 (2018) 197 [arXiv:1601.03929] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  77. [77]
    N. Oshita, M. Yamada and M. Yamaguchi, Compact objects as the catalysts for vacuum decays, Phys. Lett.B 791 (2019) 149 [arXiv:1808.01382] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    N. Oshita, K. Ueda and M. Yamaguchi, Vacuum decays around spinning black holes, arXiv:1909.01378 [INSPIRE].
  79. [79]
    K. Kohri and H. Matsui, Electroweak Vacuum Collapse induced by Vacuum Fluctuations of the Higgs Field around Evaporating Black Holes, Phys. Rev.D 98 (2018) 123509 [arXiv:1708.02138] [INSPIRE].ADSMathSciNetGoogle Scholar
  80. [80]
    P. Burda, R. Gregory and I. Moss, Vacuum metastability with black holes, JHEP08 (2015) 114 [arXiv:1503.07331] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  81. [81]
    P. Burda, R. Gregory and I. Moss, The fate of the Higgs vacuum, JHEP06 (2016) 025 [arXiv:1601.02152] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  82. [82]
    W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim.B 44S10 (1966) 1 [Erratum ibid.B 48 (1967) 463] [INSPIRE].
  83. [83]
    P. Kraus, Dynamics of anti-de Sitter domain walls, JHEP12 (1999) 011 [hep-th/9910149] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  84. [84]
    E. Witten, Baryons and branes in anti-de Sitter space, JHEP07 (1998) 006 [hep-th/9805112] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  85. [85]
    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev.D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar
  86. [86]
    M. Berasaluce-Gonzalez, P.G. Camara, F. Marchesano and A.M. Uranga, Zp charged branes in flux compactifications, JHEP04 (2013) 138 [arXiv:1211.5317] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  87. [87]
    P. Chen, G. Domènech, M. Sasaki and D.-h. Yeom, Thermal activation of thin-shells in anti-de Sitter black hole spacetime, JHEP07 (2017) 134 [arXiv:1704.04020] [INSPIRE].
  88. [88]
    M. Sasaki and D.-h. Yeom, Thin-shell bubbles and information loss problem in anti de Sitter background, JHEP12 (2014) 155 [arXiv:1404.1565] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    J.J. Heckman, C. Lawrie, L. Lin and G. Zoccarato, F-theory and Dark Energy, Fortsch. Phys.67 (2019) 1900057 [arXiv:1811.01959] [INSPIRE].CrossRefGoogle Scholar
  90. [90]
    J.J. Heckman, C. Lawrie, L. Lin, J. Sakstein and G. Zoccarato, Pixelated Dark Energy, Fortsch. Phys.67 (2019) 1900071 [arXiv:1901.10489] [INSPIRE].CrossRefGoogle Scholar
  91. [91]
    S. Chigusa, T. Moroi and Y. Shoji, State-of-the-Art Calculation of the Decay Rate of Electroweak Vacuum in the Standard Model, Phys. Rev. Lett.119 (2017) 211801 [arXiv:1707.09301] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    S. Chigusa, T. Moroi and Y. Shoji, Decay Rate of Electroweak Vacuum in the Standard Model and Beyond, Phys. Rev.D 97 (2018) 116012 [arXiv:1803.03902] [INSPIRE].ADSGoogle Scholar
  93. [93]
    L. Cuspinera, R. Gregory, K.M. Marshall and I.G. Moss, Higgs Vacuum Decay in a Braneworld, arXiv:1907.11046 [INSPIRE].
  94. [94]
    L. Cuspinera, R. Gregory, K. Marshall and I.G. Moss, Higgs Vacuum Decay from Particle Collisions?, Phys. Rev.D 99 (2019) 024046 [arXiv:1803.02871] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsKyushu UniversityFukuokaJapan
  2. 2.Faculty of Arts and ScienceKyushu UniversityFukuokaJapan

Personalised recommendations