Journal of High Energy Physics

, 2019:280 | Cite as

Strong cosmic censorship in Horndeski theory

  • Kyriakos DestounisEmail author
  • Rodrigo D. B. Fontana
  • Filipe C. Mena
  • Eleftherios Papantonopoulos
Open Access
Regular Article - Theoretical Physics


The strong cosmic censorship hypothesis has recently regained a lot of attention in charged and rotating black holes immersed in de Sitter space. Although the picture seems to be clearly leaning towards the validity of the hypothesis in Kerr-de Sitter geometries, Reissner-Nordström-de Sitter black holes appear to be serious counter-examples. Here, we perform another test to the hypothesis by using a scalar field perturbation non-minimally coupled to the Einstein tensor propagating on Reissner-Nordström-de Sitter spacetimes. Such non-minimal derivative coupling is characteristic of Horndeski scalar-tensor theories. Although the introduction of higher-order derivative couplings in the energy-momentum tensor increases the regularity requirements for the existence of weak solutions beyond the Cauchy horizon, we are still able to find a small finite region in the black hole’s parameter space where strong cosmic censorship is violated.


Black Holes Classical Theories of Gravity Spacetime Singularities 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    R. Penrose, Gravitational Collapse: the Role of General Relativity, Riv. Nuovo Cim.1 (1969) 252 [Gen. Rel. Grav.34 (2002) 1141] [INSPIRE].
  2. [2]
    D. Christodoulou, The Formation of Black Holes in General Relativity, in proceedings of the 12th Marcel Grossmann Meeting on General Relativity (MG 12), Paris, France, 12–18 July 2009, pp. 24–34 [ 0002] [arXiv:0805.3880] [INSPIRE].
  3. [3]
    V. Cardoso, J.L. Costa, K. Destounis, P. Hintz and A. Jansen, Quasinormal modes and Strong Cosmic Censorship, Phys. Rev. Lett.120 (2018) 031103 [arXiv:1711.10502] [INSPIRE].
  4. [4]
    R. Luna, M. Zilhão, V. Cardoso, J.L. Costa and J. Natário, Strong Cosmic Censorship: the nonlinear story, Phys. Rev.D 99 (2019) 064014 [arXiv:1810.00886] [INSPIRE].
  5. [5]
    M. Dafermos, The Interior of charged black holes and the problem of uniqueness in general relativity, Commun. Pure Appl. Math.58 (2005) 0445 [gr-qc/0307013] [INSPIRE].
  6. [6]
    M. Dafermos, Black holes without spacelike singularities, Commun. Math. Phys.332 (2014) 729 [arXiv:1201.1797] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    P.R. Brady and E. Poisson, Cauchy horizon instability for Reissner-Nordström black holes in de Sitter space, Class. Quant. Grav.9 (1992) 121.ADSCrossRefGoogle Scholar
  8. [8]
    A. Ori, Inner structure of a charged black hole: An exact mass-inflation solution, Phys. Rev. Lett.67 (1991) 789 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    P. Hintz and A. Vasy, The global non-linear stability of the Kerr-de Sitter family of black holes, arXiv:1606.04014 [INSPIRE].
  10. [10]
    P. Hintz, Non-linear stability of the Kerr-Newman-de Sitter family of charged black holes, Ann. PDE4 (2018) 11 [arXiv:1612.04489] [INSPIRE].
  11. [11]
    S. Chandrasekhar and J.B. Hartle, On crossing the cauchy horizon of a Reissner-Nordström black-hole, Proc. Roy. Soc. Lond.A 384 (1982) 301.Google Scholar
  12. [12]
    K.D. Kokkotas and B.G. Schmidt, Quasinormal modes of stars and black holes, Living Rev. Rel.2 (1999) 2 [gr-qc/9909058] [INSPIRE].
  13. [13]
    E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav.26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    R.A. Konoplya and A. Zhidenko, Quasinormal modes of black holes: From astrophysics to string theory, Rev. Mod. Phys.83 (2011) 793 [arXiv:1102.4014] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Hintz and A. Vasy, Analysis of linear waves near the Cauchy horizon of cosmological black holes, J. Math. Phys.58 (2017) 081509 [arXiv:1512.08004] [INSPIRE].
  16. [16]
    O.J.C. Dias, H.S. Reall and J.E. Santos, Strong cosmic censorship: taking the rough with the smooth, JHEP10 (2018) 001 [arXiv:1808.02895] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Hod, Strong cosmic censorship in charged black-hole spacetimes: As strong as ever, Nucl. Phys.B 941 (2019) 636 [arXiv:1801.07261] [INSPIRE].
  18. [18]
    S. Hod, Quasinormal modes and strong cosmic censorship in near-extremal Kerr-Newman-de Sitter black-hole spacetimes, Phys. Lett.B 780 (2018) 221 [arXiv:1803.05443] [INSPIRE].
  19. [19]
    V. Cardoso, J.L. Costa, K. Destounis, P. Hintz and A. Jansen, Strong cosmic censorship in charged black-hole spacetimes: still subtle, Phys. Rev.D 98 (2018) 104007 [arXiv:1808.03631] [INSPIRE].
  20. [20]
    Y. Mo, Y. Tian, B. Wang, H. Zhang and Z. Zhong, Strong cosmic censorship for the massless charged scalar field in the Reissner-Nordström-de Sitter spacetime, Phys. Rev.D 98 (2018) 124025 [arXiv:1808.03635] [INSPIRE].
  21. [21]
    O.J.C. Dias, H.S. Reall and J.E. Santos, Strong cosmic censorship for charged de Sitter black holes with a charged scalar field, Class. Quant. Grav.36 (2019) 045005 [arXiv:1808.04832] [INSPIRE].
  22. [22]
    Z. Zhu, S.-J. Zhang, C.E. Pellicer, B. Wang and E. Abdalla, Stability of Reissner-Nordström black hole in de Sitter background under charged scalar perturbation, Phys. Rev.D 90 (2014) 044042 [arXiv:1405.4931] [INSPIRE].
  23. [23]
    R.A. Konoplya and A. Zhidenko, Charged scalar field instability between the event and cosmological horizons, Phys. Rev.D 90 (2014) 064048 [arXiv:1406.0019] [INSPIRE].
  24. [24]
    K. Destounis, Superradiant instability of charged scalar fields in higher-dimensional Reissner-Nordström-de Sitter black holes, Phys. Rev.D 100 (2019) 044054 [arXiv:1908.06117] [INSPIRE].
  25. [25]
    B. Ge, J. Jiang, B. Wang, H. Zhang and Z. Zhong, Strong cosmic censorship for the massless Dirac field in the Reissner-Nordström-de Sitter spacetime, JHEP01 (2019) 123 [arXiv:1810.12128] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K. Destounis, Charged Fermions and Strong Cosmic Censorship, Phys. Lett.B 795 (2019) 211 [arXiv:1811.10629] [INSPIRE].
  27. [27]
    O.J.C. Dias, F.C. Eperon, H.S. Reall and J.E. Santos, Strong cosmic censorship in de Sitter space, Phys. Rev.D 97 (2018) 104060 [arXiv:1801.09694] [INSPIRE].
  28. [28]
    M. Rahman, On the validity of Strong Cosmic Censorship Conjecture in presence of Dirac fields, arXiv:1905.06675 [INSPIRE].
  29. [29]
    H. Liu, Z. Tang, K. Destounis, B. Wang, E. Papantonopoulos and H. Zhang, Strong Cosmic Censorship in higher-dimensional Reissner-Nordström-de Sitter spacetime, JHEP03 (2019) 187 [arXiv:1902.01865] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Rahman, S. Chakraborty, S. SenGupta and A.A. Sen, Fate of Strong Cosmic Censorship Conjecture in Presence of Higher Spacetime Dimensions, JHEP03 (2019) 178 [arXiv:1811.08538] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    M. Dafermos and Y. Shlapentokh-Rothman, Rough initial data and the strength of the blue-shift instability on cosmological black holes with Λ > 0, Class. Quant. Grav.35 (2018) 195010 [arXiv:1805.08764] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    B. Gwak, Strong Cosmic Censorship under Quasinormal Modes of Non-Minimally Coupled Massive Scalar Field, Eur. Phys. J.C 79 (2019) 767 [arXiv:1812.04923] [INSPIRE].
  33. [33]
    H. Guo, H. Liu, X.-M. Kuang and B. Wang, Strong Cosmic Censorship in Charged de Sitter spacetime with Scalar Field Non-minimally Coupled to Curvature, arXiv:1905.09461 [INSPIRE].
  34. [34]
    Q. Gan, G. Guo, P. Wang and H. Wu, Strong Cosmic Censorship for a Scalar Field in a Born-Infeld-de Sitter Black Hole, arXiv:1907.04466 [INSPIRE].
  35. [35]
    G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys.10 (1974) 363 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  36. [36]
    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev.D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].
  37. [37]
    C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant Galileon, Phys. Rev.D 79 (2009) 084003 [arXiv:0901.1314] [INSPIRE].
  38. [38]
    C. Deffayet, S. Deser and G. Esposito-Farese, Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors, Phys. Rev.D 80 (2009) 064015 [arXiv:0906.1967] [INSPIRE].
  39. [39]
    E. Papantonopoulos, Effects of the kinetic coupling of matter to curvature, Int. J. Mod. Phys.D 28 (2019) 1942007 [INSPIRE].
  40. [40]
    S.V. Sushkov, Exact cosmological solutions with nonminimal derivative coupling, Phys. Rev.D 80 (2009) 103505 [arXiv:0910.0980] [INSPIRE].
  41. [41]
    C. Germani and A. Kehagias, New Model of Inflation with Non-minimal Derivative Coupling of Standard Model Higgs Boson to Gravity, Phys. Rev. Lett.105 (2010) 011302 [arXiv:1003.2635] [INSPIRE].
  42. [42]
    G. Koutsoumbas, K. Ntrekis, E. Papantonopoulos and M. Tsoukalas, Gravitational Collapse of a Homogeneous Scalar Field Coupled Kinematically to Einstein Tensor, Phys. Rev.D 95 (2017) 044009 [arXiv:1512.05934] [INSPIRE].
  43. [43]
    T. Kolyvaris and E. Papantonopoulos, Superradiant Amplification of a Scalar Wave Coupled Kinematically to Curvature Scattered off a Reissner-Nordström Black Hole, arXiv:1702.04618 [INSPIRE].
  44. [44]
    T. Kolyvaris, M. Koukouvaou, A. Machattou and E. Papantonopoulos, Superradiant instabilities in scalar-tensor Horndeski theory, Phys. Rev.D 98 (2018) 024045 [arXiv:1806.11110] [INSPIRE].
  45. [45]
    M. Minamitsuji, Black hole quasinormal modes in a scalar-tensor theory with field derivative coupling to the Einstein tensor, Gen. Rel. Grav.46 (2014) 1785 [arXiv:1407.4901] [INSPIRE].
  46. [46]
    S. Yu and C. Gao, Quansinormal modes of static and spherically symmetric black holes with the derivative coupling, Gen. Rel. Grav.51 (2019) 16 [arXiv:1807.05024] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    R.A. Konoplya, Z. Stuchlík and A. Zhidenko, Massive nonminimally coupled scalar field in Reissner-Nordström spacetime: Long-lived quasinormal modes and instability, Phys. Rev.D 98 (2018) 104033 [arXiv:1808.03346] [INSPIRE].
  48. [48]
    E. Abdalla, B. Cuadros-Melgar, J. de Oliveira, A.B. Pavan and C.E. Pellicer, Vectorial and spinorial perturbations in Galileon Black Holes: Quasinormal modes, quasiresonant modes and stability, Phys. Rev.D 99 (2019) 044023 [arXiv:1810.01198] [INSPIRE].
  49. [49]
    R.D.B. Fontana, J. de Oliveira and A.B. Pavan, Dynamical evolution of non-minimally coupled scalar field in spherically symmetric de Sitter spacetimes, Eur. Phys. J.C 79 (2019) 338 [arXiv:1808.01044] [INSPIRE].
  50. [50]
    E. Abdalla, B. Cuadros-Melgar, R.D.B. Fontana, J. de Oliveira, E. Papantonopoulos and A.B. Pavan, Instability of a Reissner-Nordström-AdS black hole under perturbations of a scalar field coupled to the Einstein tensor, Phys. Rev.D 99 (2019) 104065 [arXiv:1903.10850] [INSPIRE].
  51. [51]
    J.L. Costa, P.M. Girão, J. Natário and J.D. Silva, On the Occurrence of Mass Inflation for the Einstein-Maxwell-Scalar Field System with a Cosmological Constant and an Exponential Price Law, Commun. Math. Phys.361 (2018) 289 [arXiv:1707.08975] [INSPIRE].
  52. [52]
    M. Dafermos and J. Luk, The interior of dynamical vacuum black holes I: The C 0-stability of the Kerr Cauchy horizon, arXiv:1710.01722 [INSPIRE].
  53. [53]
    R.M. Wald, General Relativity, Chicago University Press, Chicago U.S.A. (1984).
  54. [54]
    V. Faraoni, Quasilocal energy in modified gravity, Class. Quant. Grav.33 (2016) 015007 [arXiv:1508.06849] [INSPIRE].
  55. [55]
    L.B. Szabados, Quasi-Local Energy-Momentum and Angular Momentum in General Relativity, Living Rev. Rel.12 (2009) 4 [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    G. Papallo and H.S. Reall, On the local well-posedness of Lovelock and Horndeski theories, Phys. Rev.D 96 (2017) 044019 [arXiv:1705.04370] [INSPIRE].
  57. [57]
    G. Papallo, On the hyperbolicity of the most general Horndeski theory, Phys. Rev.D 96 (2017) 124036 [arXiv:1710.10155] [INSPIRE].
  58. [58]
    P.G. LeFloch and Y. Ma, Mathematical Validity of the f (R) Theory of Modified Gravity, arXiv:1412.8151 [INSPIRE].
  59. [59]
    A. Jansen, Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes, Eur. Phys. J. Plus132 (2017) 546 [arXiv:1709.09178] [INSPIRE].
  60. [60]
    O.J.C. Dias, J.E. Santos and B. Way, Numerical Methods for Finding Stationary Gravitational Solutions, Class. Quant. Grav.33 (2016) 133001 [arXiv:1510.02804] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    C. Gundlach, R.H. Price and J. Pullin, Late time behavior of stellar collapse and explosions: 1. Linearized perturbations, Phys. Rev.D 49 (1994) 883 [gr-qc/9307009] [INSPIRE].
  62. [62]
    E. Berti, V. Cardoso, J.A. Gonzalez and U. Sperhake, Mining information from binary black hole mergers: A Comparison of estimation methods for complex exponentials in noise, Phys. Rev.D 75 (2007) 124017 [gr-qc/0701086] [INSPIRE].
  63. [63]
    B.F. Schutz and C.M. Will, Black hole normal modes: A semianalytic approach, Astrophys. J.291 (1985) L33 [INSPIRE].
  64. [64]
    D.R. Brill and S.A. Hayward, Global structure of a black hole cosmos and its extremes, Class. Quant. Grav.11 (1994) 359 [gr-qc/9304007] [INSPIRE].
  65. [65]
    A.D. Rendall, Asymptotics of solutions of the Einstein equations with positive cosmological constant, Ann. Henri Poincaré5 (2004) 1041 [gr-qc/0312020] [INSPIRE].
  66. [66]
    D.P. Du, B. Wang and R.K. Su, Quasinormal modes in pure de Sitter space-times, Phys. Rev.D 70 (2004) 064024 [hep-th/0404047] [INSPIRE].
  67. [67]
    A. Lopez-Ortega, Quasinormal modes of D-dimensional de Sitter spacetime, Gen. Rel. Grav.38 (2006) 1565 [gr-qc/0605027] [INSPIRE].
  68. [68]
    A. Vasy, The wave equation on asymptotically de Sitter-like spaces, Adv. Math.223 (2010) 49 [arXiv:0706.3669] [INSPIRE].
  69. [69]
    S. Klainerman, I. Rodnianski and J. Szeftel, The Bounded L 2Curvature Conjecture, arXiv:1204.1767 [INSPIRE].
  70. [70]
    L.W. Brenneman et al., The Spin of the Supermassive Black Hole in NGC 3783, Astrophys. J.736 (2011) 103 [arXiv:1104.1172] [INSPIRE].
  71. [71]
    G. Risaliti et al., A rapidly spinning supermassive black hole at the centre of NGC 1365, Nature494 (2013) 449 [arXiv:1302.7002] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Kyriakos Destounis
    • 1
    Email author
  • Rodrigo D. B. Fontana
    • 2
  • Filipe C. Mena
    • 3
    • 4
  • Eleftherios Papantonopoulos
    • 5
  1. 1.CENTRA, Departamento de Física, Instituto Superior Técnico, IST, Universidade de Lisboa, ULLisboaPortugal
  2. 2.Universidade Federal da Fronteira Sul, Campus Chapecó-SC RodoviaFronteira SulBrasil
  3. 3.Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  4. 4.Centro de Matemática, Universidade do MinhoBragaPortugal
  5. 5.Physics DivisionNational Technical University of AthensAthensGreece

Personalised recommendations