Advertisement

Journal of High Energy Physics

, 2019:279 | Cite as

Light mediators in anomaly free U (1)X models. Part II. Constraints on dark gauge bosons

  • F. C. CorreiaEmail author
  • Svjetlana Fajfer
Open Access
Regular Article - Theoretical Physics
  • 19 Downloads

Abstract

We consider experimental constraints in the MeV region in order to determine the parameter space for the U(1)X extension of the Standard Model, presented in the first part of our work. In particular, we focus on the model UV-completed by cold WIMPs. We conclude that the electron anomalous magnetic moment and the neutrino trident production provide the most stringent bounds to \( {g}_X^2 \) 106 in the mass interval below the di-muon threshold. By allowing the axial-vector coupling of the dark gauge boson Z′, the interference effect with the SM gauge bosons may reduce the bounds coming from the neutrino trident production. At the same time, such coupling allows a region of the parameter space already favored both by the relic abundance and by the discrepancy between experimental result and theoretical prediction for the muon anomalous magnetic moment. We emphasize that light-Z′ interactions, non-universal for the two first lepton families, necessarily create a difference in the proton charge radius measured in the Lamb shift of the e-hydrogen and μ-hydrogen. Finally, we determine the effects of the new gauge boson on the forward-backward asymmetry in e+e\( \overline{f}f \) = μ, τ, and on the leptonic decays M → jνjl+l, where M = π, K, D, Ds, B and j, l = e, μ.

Keywords

Beyond Standard Model Higgs Physics Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    F.C. Correia and S. Fajfer, Restrained dark U (1) d at low energies, Phys. Rev. D 94 (2016) 115023 [arXiv:1609.00860].ADSGoogle Scholar
  2. [2]
    F.S. Queiroz and W. Shepherd, New physics contributions to the muon anomalous magnetic moment: a numerical code, Phys. Rev. D 89 (2014) 095024 [arXiv:1403.2309] [INSPIRE].ADSGoogle Scholar
  3. [3]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino trident production: a powerful probe of new physics with neutrino beams, Phys. Rev. Lett. 113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    K.S. Babu, A. Friedland, P.A.N. Machado, and I. Mocioiu, Flavor gauge models below the Fermi scale, JHEP 12 (2017) 096 [arXiv:1705.01822].ADSCrossRefGoogle Scholar
  5. [5]
    J.L. Feng et al., Particle physics models for the 17 MeV anomaly in beryllium nuclear decays, Phys. Rev. D 95 (2017) 035017 [arXiv:1608.03591].ADSGoogle Scholar
  6. [6]
    B. Batell, D. McKeen and M. Pospelov, New parity-violating muonic forces and the proton charge radius, Phys. Rev. Lett. 107 (2011) 011803 [arXiv:1103.0721] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Pospelov, Secluded U (1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].ADSGoogle Scholar
  8. [8]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP shines light on dark matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A. Ismail, W.Y. Keung, K.H. Tsao and J. Unwin, Axial vector Z′ and anomaly cancellation, Nucl. Phys. B 918 (2017) 220 [arXiv:1609.02188].ADSCrossRefGoogle Scholar
  10. [10]
    S. Baum and N.R. Shah, Two Higgs doublets and a complex singlet: disentangling the decay topologies and associated phenomenology, JHEP 12 (2018) 044 [arXiv:1808.02667].ADSCrossRefGoogle Scholar
  11. [11]
    M. Dutra et al., MeV dark matter complementarity and the dark photon portal, JCAP 03 (2018) 037 [arXiv:1801.05447].ADSCrossRefGoogle Scholar
  12. [12]
    Y. Kahn, G. Krnjaic, S. Mishra-Sharma and T.M.P. Tait, Light weakly coupled axial forces: models, constraints, and projections, JHEP 05 (2017) 002 [arXiv:1609.09072].ADSCrossRefGoogle Scholar
  13. [13]
    J. Alexander et al., Dark sectors 2016 workshop: community report, arXiv:1608.08632.
  14. [14]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Particle Data Group collaboration, Review of particle physics, Chin. Phys. C 40 (2016) 100001.Google Scholar
  16. [16]
    A. Antognini et al., Theory of the 2S-2P Lamb shift and 2S hyperfine splitting in muonic hydrogen, Ann. Phys. 331 (2013) 127 [arXiv:1208.2637] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    N. Bezginov et al., A measurement of the atomic hydrogen lamb shift and the proton charge radius, Science 365 (2019) 1007.ADSCrossRefGoogle Scholar
  18. [18]
    P.J. Mohr, B.N. Taylor and D.B. Newell, Codata recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys. 84 (2012) 1527.ADSCrossRefGoogle Scholar
  19. [19]
    D. Tucker-Smith and I. Yavin, Muonic hydrogen and MeV forces, Phys. Rev. D 83 (2011) 101702 [arXiv:1011.4922] [INSPIRE].ADSGoogle Scholar
  20. [20]
    K. Pachucki, Theory of the Lamb shift in muonic hydrogen, Phys. Rev. A 53 (1996) 2092 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C.Y. Pang, R.H. Hildebrand, G.D. Cable and R. Stiening, Search for rare k + decays. I. k + → μ + \( v\overline{v}v \), Phys. Rev. D 8 (1973) 1989 [INSPIRE].
  22. [22]
    J.P. Leveille, The second order weak correction to (g − 2) of the muon in arbitrary gauge models, Nucl. Phys. B 137 (1978) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    U. Haisch, J.F. Kamenik, A. Malinauskas and M. Spira, Collider constraints on light pseudoscalars, JHEP 03 (2018) 178 [arXiv:1802.02156].CrossRefGoogle Scholar
  24. [24]
    W. Czyz, G.C. Sheppey and J.D. Walecka, Neutrino production of lepton pairs through the point four-fermion interaction, Nuovo Cim. 34 (1964) 404 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Ballett et al., Neutrino trident scattering at near detectors, arXiv:1807.10973.
  26. [26]
    P. Ballett et al., Z′ s in neutrino scattering at DUNE, Phys. Rev. D 100 (2019) 055012 [arXiv:1902.08579].ADSGoogle Scholar
  27. [27]
    CHARM-II collaboration, First observation of neutrino trident production, Phys. Lett. B 245 (1990) 271 [INSPIRE].
  28. [28]
    E. Byckling and K. Kajantie, Particle kinematics, University of Jyvaskyla, Jyvaskyla, Finland (1971).Google Scholar
  29. [29]
    R. Belusevic and J. Smith, W-Z interference in neutrino-nucleus scattering, Phys. Rev. D 37 (1988) 2419 [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Silk et al., Particle dark matter: observations, Models and searches, Cambridge University Press, Cambridge U.K.. (2010).Google Scholar
  31. [31]
    WMAP collaboration, Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: data processing, sky maps and basic results, Astrophys. J. Suppl. 180 (2009) 225 [arXiv:0803.0732] [INSPIRE].
  32. [32]
    J. Bijnens, G. Ecker and J. Gasser, Radiative semileptonic kaon decays, Nucl. Phys. B 396 (1993) 81 [hep-ph/9209261] [INSPIRE].
  33. [33]
    B.P. Kersevan and E. Richter-Was, Improved phase space treatment of massive multi-particle final states, Eur. Phys. J. C 39 (2005) 439 [hep-ph/0405248] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut für PhysikTechnische Universität DortmundDortmundGermany
  2. 2.Department of PhysicsUniversity of LjubljanaLjubljanaSlovenia
  3. 3.J. Stefan InstituteLjubljanaSlovenia

Personalised recommendations