Advertisement

Journal of High Energy Physics

, 2019:277 | Cite as

Asymptotic symmetries in (d + 2)-dimensional gauge theories

  • Temple HeEmail author
  • Prahar Mitra
Open Access
Regular Article - Theoretical Physics
  • 17 Downloads

Abstract

We show that the subleading soft photon theorem in a (d + 2)-dimensional massless abelian gauge theory gives rise to a Ward identity corresponding to divergent large gauge transformations acting on the celestial sphere at null infinity. We further generalize our analysis to (d + 2)-dimensional non-abelian gauge theories and show that the leading and subleading soft gluon theorem give rise to Ward identities corresponding to asymptotic symmetries of the theory.

Keywords

Field Theories in Higher Dimensions Gauge Symmetry Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    A. Strominger, On EMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Campiglia and A. Laddha, Asymptotic symmetries and subleading soft graviton theorem, Phys. Rev. D 90 (2014) 124028 [arXiv:1408.2228] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M. Campiglia and A. Laddha, Asymptotic symmetries of gravity and soft theorems for massive particles, JHEP 12 (2015) 094 [arXiv:1509.01406] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    M. Campiglia and A. Laddha, Asymptotic symmetries of QED and Weinberg's soft photon theorem, JHEP 07 (2015) 115 [arXiv:1505.05346] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Campiglia and A. Laddha, New symmetries for the Gravitational S-matrix, JHEP 04 (2015) 076 [arXiv:1502.02318] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    T.T. Dumitrescu, T. He, P. Mitra and A. Strominger, Infinite-Dimensional Fermionic Symmetry in Super-symmetric Gauge Theories, arXiv:1511. 07429 [INSPIRE].
  7. [7]
    T. He, V. Lysov, P. Mitra and A. Strominger, EMS super-translations and Weinberg's soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401. 7026] [INSPIRE].
  8. [8]
    V. Lysov, Asymptotic Fermionic Symmetry From Soft Gravitino Theorem, arXiv:1512.03015 [INSPIRE].
  9. [9]
    A. Mohd, A note on asymptotic symmetries and soft-photon theorem, JHEP 02 (2015) 060 [arXiv:1412.5365] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    M. Campiglia and A. Ladd ha, Subleading soft photons and large gauge transformations, JHEP 11 (2016) 012 [arXiv:1605.09677] [INSPIRE].
  11. [11]
    E. Conde and P. Mao, EMS Super-translations and Not So Soft Gravitons, JHEP 05 (2017) 060 [arXiv:1612.08294] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    T. He, P. Mitra and A. Strominger, 2D Kac-Moody Symmetry of 4D Yang-Mills Theory, JHEP 10 (2016) 137 [arXiv:1503.02663] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    D. Kapec, M. Pate and A. Strominger, New Symmetries of QED, Adv. Theor. Math. Phys. 21 (2017) 1769 [arXiv:1506 .02906] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  14. [14]
    D. Kapec, P. Mitra, A.-M. Raclariu and A. Strominger, 2D Stress Tensor for 4D Gravity, Phys. Rev. Lett. 119 (2017) 121601 [arXiv:1609.00282] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Mao and J.-B. Wu, Note on asymptotic symmetries and soft gluon theorems, Phys. Rev. D 96 (2017) 065023 [arXiv:1704.05740] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    A. Laddha and P. Mitra, Asymptotic Symmetries and Subleading Soft Photon Theorem in Effective Field Theories, JHEP 05 (2018) 132 [arXiv:1709. 03850] [INSPIRE].
  17. [17]
    H. Hirai and S. Sugishita, Conservation Laws from Asymptotic Symmetry and Subleading Charges in QED, JHEP 07 (2018) 122 [arXiv:1805.05651] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    D. Kapec, V. Lysov and A. Strominger, Asymptotic Symmetries of Massless QED in Even Dimensions, Adv. Theor. Math. Phys. 21 (2017) 1747 [arXiv:1412.2763] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  19. [19]
    D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Higher-Dimensional Supertranslations and Weinberg's Soft Graviton Theorem, arXiv:1502.07644 [INSPIRE].
  20. [20]
    N.L. Balazs, Wave propagation in even and odd dimensional spaces, Proc. Phys. Soc. A 68 (1955) 521.ADSCrossRefGoogle Scholar
  21. [21]
    T. He and P. Mitra, Asymptotic Symmetries and Weinberg's Soft Photon Theorem in Minkri+2, arXiv:1903.02608 [INSPIRE].
  22. [22]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    S. Weinberg, The Quantum theory of fields. Volume 1: Foundations, Cambridge University Press, Cambridge U.K. (2005) [INSPIRE].
  24. [24]
    E. Conde and P. Mao, Remarks on asymptotic symmetries and the subleading soft photon theorem, Phys. Rev. D 95 (2017) 021701 [arXiv:1605.09731] [INSPIRE].ADSGoogle Scholar
  25. [25]
    R.M. Wald and A. Zoupas, A General definition of 'conserved quantities' in general relativity and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Quantum Mathematics and Phy8ics (QMAP) Department of Phy8icsDavisU.S.A.
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations