Advertisement

Journal of High Energy Physics

, 2019:276 | Cite as

Circuit complexity and 2D bosonisation

  • Dongsheng GeEmail author
  • Giuseppe Policastro
Open Access
Regular Article - Theoretical Physics
  • 13 Downloads

Abstract

We consider the circuit complexity of free bosons and free fermions in 1+1 dimensions. Motivated by the results of [1, 2, 3] who found different behavior in the complexity of free bosons and fermions, in any dimension, we consider the 1+1 dimensional case where, thanks to the bosonisation equivalence of the Hilbert spaces, we can consider the same state from both the bosonic and the fermionic perspectives. This allows us to study the dependence of the complexity on the choice of the set of gates, which explains the discrepancy. We study the effect in two classes of states: i) bosonic-coherent / fermionic- gaussian states; ii) states that are both bosonic- and fermionic-gaussian. We consider the complexity relative to the ground state. In the first class, the different complexities can be related to each other by introducing a mode-dependent cost function in one of the descriptions. The differences in the second class are more important, in terms of the structure of UV divergencies and the overall behavior of the complexity.

Keywords

AdS-CFT Correspondence Effective Field Theories Field Theories in Lower Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP 10 (2017) 107 [arXiv:1707.08570] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    L. Hackl and R.C. Myers, Circuit complexity for free fermions, JHEP 07 (2018) 139 [arXiv:1803.10638] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    R. Khan, C. Krishnan and S. Sharma, Circuit complexity in fermionic field theory, Phys. Rev. D 98 (2018) 126001 [arXiv:1801.07620] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys. 64 (2016) 24 [Addendum ibid. 64 (2016) 44] [arXiv:1403.5695] [INSPIRE].
  5. [5]
    D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].ADSGoogle Scholar
  6. [6]
    L. Susskind and Y. Zhao, Switchbacks and the bridge to nowhere, arXiv:1408.2823 [INSPIRE].
  7. [7]
    L. Susskind, Entanglement is not enough, Fortsch. Phys. 64 (2016) 49 [arXiv:1411.0690] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    L. Susskind, Three lectures on complexity and black holes, arXiv:1810.11563 [INSPIRE].
  9. [9]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic complexity equals bulk action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part I, JHEP 06 (2018) 046 [arXiv:1804.07410] [INSPIRE].
  13. [13]
    S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part II, JHEP 06 (2018) 114 [arXiv:1805.07262] [INSPIRE].
  14. [14]
    D. Carmi, R.C. Myers and P. Rath, Comments on holographic complexity, JHEP 03 (2017) 118 [arXiv:1612.00433] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    S. Chapman, D. Ge and G. Policastro, Holographic complexity for defects distinguishes action from volume, JHEP 05 (2019) 049 [arXiv:1811.12549] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a definition of complexity for quantum field theory states, Phys. Rev. Lett. 120 (2018) 121602 [arXiv:1707.08582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M.R. Dowling and M.A. Nielsen, The geometry of quantum computation, quant-ph/0701004.
  20. [20]
    P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Liouville action as path-integral complexity: from continuous tensor networks to AdS/CFT, JHEP 11 (2017) 097 [arXiv:1706.07056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A. Bhattacharyya, P. Caputa, S.R. Das, N. Kundu, M. Miyaji and T. Takayanagi, Path-integral complexity for perturbed CFTs, JHEP 07 (2018) 086 [arXiv:1804.01999] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    D.A. Roberts and B. Yoshida, Chaos and complexity by design, JHEP 04 (2017) 121 [arXiv:1610.04903] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    S. Chapman et al., Complexity and entanglement for thermofield double states, SciPost Phys. 6 (2019) 034 [arXiv:1810.05151] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Bhattacharyya, A. Shekar and A. Sinha, Circuit complexity in interacting QFTs and RG flows, JHEP 10 (2018) 140 [arXiv:1808.03105] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a New York time story, JHEP 03 (2019) 044 [arXiv:1811.03097] [INSPIRE].
  26. [26]
    R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang and K.-Y. Kim, Principles and symmetries of complexity in quantum field theory, Eur. Phys. J. C 79 (2019) 109 [arXiv:1803.01797] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang and K.-Y. Kim, More on complexity of operators in quantum field theory, JHEP 03 (2019) 161 [arXiv:1809.06678] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    T. Ali, A. Bhattacharyya, S. Shajidul Haque, E.H. Kim and N. Moynihan, Post-quench evolution of distance and uncertainty in a topological system: complexity, entanglement and revivals, arXiv:1811.05985 [INSPIRE].
  29. [29]
    J. Watrous, Quantum computational complexity, arXiv:0804.3401.
  30. [30]
    R. Cleve, An introduction to quantum complexity theory, quant-ph/9906111.
  31. [31]
    J. Cotler, M.R. Mohammadi Mozaffar, A. Mollabashi and A. Naseh, Renormalization group circuits for weakly interacting continuum field theories, Fortsch. Phys. 67 (2019) 1900038 [arXiv:1806.02831] [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    J. von Delft and H. Schoeller, Bosonization for beginners: refermionization for experts, Annalen Phys. 7 (1998) 225 [cond-mat/9805275] [INSPIRE].
  33. [33]
    M. Guo, J. Hernandez, R.C. Myers and S.-M. Ruan, Circuit complexity for coherent states, JHEP 10 (2018) 011 [arXiv:1807.07677] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    R.-Q. Yang, Complexity for quantum field theory states and applications to thermofield double states, Phys. Rev. D 97 (2018) 066004 [arXiv:1709.00921] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    I. Bengtsson and K. Zyczkowski, Geometry of quantum states: an introduction to quantum entanglement, Cambridge University Press, New York, NY, U.S.A. (2006).CrossRefGoogle Scholar
  36. [36]
    F.M. Paula, T.R. de Oliveira and M.S. Sarandy, Geometric quantum discord through the Schatten 1-norm, Phys. Rev. A 87 (2013) 064101.ADSCrossRefGoogle Scholar
  37. [37]
    A. Bernamonti, F. Galli, J. Hernandez, R.C. Myers, S.-M. Ruan and J. Simón, First law of holographic complexity, Phys. Rev. Lett. 123 (2019) 081601 [arXiv:1903.04511] [INSPIRE].
  38. [38]
    T. Giamarchi, Quantum physics in one dimension, Oxford University Press, Oxford, U.K. (2003).CrossRefGoogle Scholar
  39. [39]
    A.O. Gogolin, A.A. Nersesian and A.M. Tsvelik, Bosonization and strongly correlated systems, Cambridge University Press, Cambridge, U.K. (2004) [INSPIRE].Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique de l’Ećole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne UniversitéUniversité Paris-DiderotParisFrance

Personalised recommendations