Advertisement

Journal of High Energy Physics

, 2019:274 | Cite as

New relation for Witten diagrams

  • Soner AlbayrakEmail author
  • Chandramouli Chowdhury
  • Savan Kharel
Open Access
Regular Article - Theoretical Physics
  • 16 Downloads

Abstract

In this paper, we present a simple and iterative algorithm that computes Witten diagrams. We focus on the gauge correlators in AdS in four dimensions in momentum space. These new combinatorial relations will allow one to generate tree level amplitudes algebraically, without having to do any explicit bulk integrations; hence, leading to a simple method of calculating higher point gauge amplitudes.

Keywords

AdS-CFT Correspondence Scattering Amplitudes Conformal Field Theory Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Hodges and J. Trnka, A Note on Polytopes for Scattering Amplitudes, JHEP 04 (2012) 081 [arXiv:1012.6030] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP 10 (2014) 030 [arXiv:1312.2007] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Arkani-Hamed and J. Trnka, Into the Amplituhedron, JHEP 12 (2014) 182 [arXiv:1312.7878] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].
  7. [7]
    M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    L.J. Dixon, A brief introduction to modern amplitude methods, in proceedings of the 2012 European School of High-Energy Physics (ESHEP 2012) La Pommeraye, Anjou, France, 6–19 June 2012, pp. 31–67 [https://doi.org/10.5170/CERN-2014-008.31] [arXiv:1310.5353] [INSPIRE].
  9. [9]
    J.M. Henn and J.C. Plefka, Scattering Amplitudes in Gauge Theories, Lect. Notes Phys. 883 (2014) 1 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Weinzierl, Tales of 1001 Gluons, Phys. Rept. 676 (2017) 1 [arXiv:1610.05318] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    G. ’t Hooft, Dimensional reduction in quantum gravity, in proceedings of the Conference on Highlights of Particle and Condensed Matter Physics (SALAMFEST), Trieste, Italy, 8–12 March 1993, Conf. Proc. C 930308 (1993) 284 [gr-qc/9310026] [INSPIRE].
  13. [13]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  14. [14]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    L. Rastelli and X. Zhou, Mellin amplitudes for AdS 5 × S 5 , Phys. Rev. Lett. 118 (2017) 091602 [arXiv:1608.06624] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    L. Rastelli, K. Roumpedakis and X. Zhou, AdS 3 × S 3 Tree-Level Correlators: Hidden Six-Dimensional Conformal Symmetry, arXiv:1905.11983 [INSPIRE].
  19. [19]
    S. Giusto, R. Russo, A. Tyukov and C. Wen, Holographic correlators in AdS3 without Witten diagrams, JHEP 09 (2019) 030 [arXiv:1905.12314] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT d /AdS d+1 correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].Google Scholar
  21. [21]
    E. D’Hoker, D.Z. Freedman and L. Rastelli, AdS/CFT four point functions: How to succeed at z-integrals without really trying, Nucl. Phys. B 562 (1999) 395 [hep-th/9905049] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M.F. Paulos, Towards Feynman rules for Mellin amplitudes, JHEP 10 (2011) 074 [arXiv:1107.1504] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Mack, D-dimensional Conformal Field Theories with anomalous dimensions as Dual Resonance Models, in proceedings of the Conference on Algebraic Methods in Quantum Field Theory: 50 Years of Mathematical Physics in Bulgaria on the occasion of the 75th anniversary of Ivan Todorov, Sofia, Bulgaria, 15–16 May 2009, Bulg. J. Phys. 36 (2009) 214 [arXiv:0909.1024] [INSPIRE].MathSciNetGoogle Scholar
  25. [25]
    A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A Natural Language for AdS/CFT Correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    S. Kharel and G. Siopsis, Tree-level Correlators of scalar and vector fields in AdS/CFT, JHEP 11 (2013) 159 [arXiv:1308.2515] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    A.L. Fitzpatrick and J. Kaplan, Analyticity and the Holographic S-matrix, JHEP 10 (2012) 127 [arXiv:1111.6972] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M.S. Costa, V. Gonçalves and J. Penedones, Spinning AdS Propagators, JHEP 09 (2014) 064 [arXiv:1404.5625] [INSPIRE].
  30. [30]
    S. Raju, Recursion Relations for AdS/CFT Correlators, Phys. Rev. D 83 (2011) 126002 [arXiv:1102.4724] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Raju, New Recursion Relations and a Flat Space Limit for AdS/CFT Correlators, Phys. Rev. D 85 (2012) 126009 [arXiv:1201.6449] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S. Albayrak and S. Kharel, Towards the higher point holographic momentum space amplitudes, JHEP 02 (2019) 040 [arXiv:1810.12459] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  33. [33]
    C.B. Jepsen and S. Parikh, Recursion Relations in p-adic Mellin Space, J. Phys. A 52 (2019) 285401 [arXiv:1812.09801] [INSPIRE].MathSciNetGoogle Scholar
  34. [34]
    C.B. Jepsen and S. Parikh, p-adic Mellin Amplitudes, JHEP 04 (2019) 101 [arXiv:1808.08333] [INSPIRE].
  35. [35]
    S.S. Gubser, C.B. Jepsen and B. Trundy, Spin in p-adic AdS/CFT, J. Phys. A 52 (2019) 144004 [arXiv:1811.02538] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks, JHEP 01 (2016) 146 [arXiv:1508.00501] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    E.Y. Yuan, Simplicity in AdS Perturbative Dynamics, arXiv:1801.07283 [INSPIRE].
  38. [38]
    A. Bzowski, P. McFadden and K. Skenderis, Evaluation of conformal integrals, JHEP 02 (2016) 068 [arXiv:1511.02357] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    A. Bzowski, P. McFadden and K. Skenderis, Holographic predictions for cosmological 3-point functions, JHEP 03 (2012) 091 [arXiv:1112.1967] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Bzowski, P. McFadden and K. Skenderis, Holography for inflation using conformal perturbation theory, JHEP 04 (2013) 047 [arXiv:1211.4550] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in momentum space, JHEP 03 (2014) 111 [arXiv:1304.7760] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J.A. Farrow, A.E. Lipstein and P. McFadden, Double copy structure of CFT correlators, JHEP 02 (2019) 130 [arXiv:1812.11129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and Gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Raju, BCFW for Witten Diagrams, Phys. Rev. Lett. 106 (2011) 091601 [arXiv:1011.0780] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    S. Raju, Four Point Functions of the Stress Tensor and Conserved Currents in AdS 4 /CFT 3, Phys. Rev. D 85 (2012) 126008 [arXiv:1201.6452] [INSPIRE].ADSGoogle Scholar
  48. [48]
    L.J. Dixon, Calculating scattering amplitudes efficiently, in proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 95): QCD and Beyond, Boulder, Colorado, U.S.A., 4–30 June 1995, pp. 539–584 [hep-ph/9601359] [INSPIRE] and online pdf version at https://www-public.slac.stanford.edu/sciDoc/docMeta.aspx?slacPubNumber=SLAC-PUB-7106.
  49. [49]
    P. Benincasa, From the flat-space S-matrix to the Wavefunction of the Universe, arXiv:1811.02515 [INSPIRE].
  50. [50]
    N. Arkani-Hamed and P. Benincasa, On the Emergence of Lorentz Invariance and Unitarity from the Scattering Facet of Cosmological Polytopes, arXiv:1811.01125 [INSPIRE].
  51. [51]
    N. Arkani-Hamed, P. Benincasa and A. Postnikov, Cosmological Polytopes and the Wavefunction of the Universe, arXiv:1709.02813 [INSPIRE].
  52. [52]
    N. Arkani-Hamed and P. Benincasa, personal correspondence.Google Scholar
  53. [53]
    J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP 09 (2011) 045 [arXiv:1104.2846] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsYale UniversityNew HavenU.S.A.
  2. 2.Walter Burke Institute for Theoretical PhysicsCaltechPasadenaU.S.A.
  3. 3.International Centre for Theoretical SciencesTata Institute of Fundamental ResearchBangaloreIndia
  4. 4.Department of PhysicsWilliams CollegeWilliamstownU.S.A.

Personalised recommendations