Advertisement

Journal of High Energy Physics

, 2019:269 | Cite as

Shadow of a rotating squashed Kaluza-Klein black hole

  • Fen Long
  • Jieci Wang
  • Songbai ChenEmail author
  • Jiliang Jing
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

We study the shadow of a rotating squashed Kaluza-Klein (KK) black hole and the shadow is found to possess distinct properties from those of usual rotating black holes. It is shown that the shadow for a rotating squashed KK black hole is heavily influenced by the specific angular momentum of photon from the fifth dimension. Especially, as the parameters lie in a certain special range, there is no any shadow for a black hole, which does not emerge for the usual black holes. In the case where the black hole shadow exists, the shadow shape is a perfect black disk and its radius decreases with the rotation parameter of the black hole. Moreover, the change of the shadow radius with extra dimension parameter also depends on the rotation parameter of black hole. Finally, with the latest observation data, we estimate the angular radius of the shadow for the supermassive black hole Sgr A at the centre of the Milky Way galaxy and the supermassive black hole in M 87.

Keywords

Black Holes in String Theory Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    Event Horizon Telescope collaboration, First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. 875 (2019) L1 [arXiv:1906.11238] [INSPIRE].
  2. [2]
    Event Horizon Telescope collaboration, First M87 Event Horizon Telescope Results. II. Array and Instrumentation, Astrophys. J. 875 (2019) L2 [arXiv:1906.11239] [INSPIRE].
  3. [3]
    Event Horizon Telescope collaboration, First M87 Event Horizon Telescope Results. III. Data Processing and Calibration, Astrophys. J. 875 (2019) L3 [arXiv:1906.11240] [INSPIRE].
  4. [4]
    Event Horizon Telescope collaboration, First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole, Astrophys. J. 875 (2019) L4 [arXiv:1906.11241] [INSPIRE].
  5. [5]
    Event Horizon Telescope collaboration, First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring, Astrophys. J. 875 (2019) L5 [arXiv:1906.11242] [INSPIRE].
  6. [6]
    Event Horizon Telescope collaboration, First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole, Astrophys. J. 875 (2019) L6 [arXiv:1906.11243] [INSPIRE].
  7. [7]
    J.M. Bardeen, Timelike and null geodesics in the Kerr metric, in Black Holes (Les Astres Occlus), C. DeWitt and B. DeWitt eds., Gordon and Breach, New York U.S.A. (1973), pp. 215–239.Google Scholar
  8. [8]
    S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford University Press, New York U.S.A. (1992).zbMATHGoogle Scholar
  9. [9]
    P.V.P. Cunha, C.A.R. Herdeiro and E. Radu, Fundamental photon orbits: black hole shadows and spacetime instabilities, Phys. Rev. D 96 (2017) 024039 [arXiv:1705.05461] [INSPIRE].
  10. [10]
    M. Wang, S. Chen and J. Jing, Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole, JCAP 10 (2017) 051 [arXiv:1707.09451] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    P.V.P. Cunha, C.A.R. Herdeiro, E. Radu and H.F. Runarsson, Shadows of Kerr black holes with scalar hair, Phys. Rev. Lett. 115 (2015) 211102 [arXiv:1509.00021] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P.V.P. Cunha, C.A.R. Herdeiro, E. Radu and H.F. Runarsson, Shadows of Kerr black holes with and without scalar hair, Int. J. Mod. Phys. D 25 (2016) 1641021 [arXiv:1605.08293] [INSPIRE].
  13. [13]
    F.H. Vincent, E. Gourgoulhon, C.A.R. Herdeiro and E. Radu, Astrophysical imaging of Kerr black holes with scalar hair, Phys. Rev. D 94 (2016) 084045 [arXiv:1606.04246] [INSPIRE].
  14. [14]
    P.V.P. Cunha, J. Grover, C.A.R. Herdeiro, E. Radu, H.F. Runarsson and A. Wittig, Chaotic lensing around boson stars and Kerr black holes with scalar hair, Phys. Rev. D 94 (2016) 104023 [arXiv:1609.01340] [INSPIRE].
  15. [15]
    J.O. Shipley and S.R. Dolan, Binary black hole shadows, chaotic scattering and the Cantor set, Class. Quant. Grav. 33 (2016) 175001 [arXiv:1603.04469] [INSPIRE].
  16. [16]
    A. Bohn et al., What does a binary black hole merger look like?, Class. Quant. Grav. 32 (2015) 065002 [arXiv:1410.7775] [INSPIRE].
  17. [17]
    M. Wang, S. Chen and J. Jing, Shadows of Bonnor black dihole by chaotic lensing, Phys. Rev. D 97 (2018) 064029 [arXiv:1710.07172] [INSPIRE].
  18. [18]
    M. Wang, S. Chen and J. Jing, Chaotic shadow of a non-Kerr rotating compact object with quadrupole mass moment, Phys. Rev. D 98 (2018) 104040 [arXiv:1801.02118] [INSPIRE].
  19. [19]
    H. Falcke, F. Melia and E. Agol, Viewing the shadow of the black hole at the galactic center, Astrophys. J. 528 (2000) L13 [astro-ph/9912263] [INSPIRE].
  20. [20]
    A. de Vries, The apparent shape of a rotating charged black hole, closed photon orbits and the bifurcation set A 4, Class. Quant. Grav. 17 (2000) 123.ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    R. Takahashi, Shapes and positions of black hole shadows in accretion disks and spin parameters of black holes, J. Korean Phys. Soc. 45 (2004) S1808 [astro-ph/0405099] [INSPIRE].
  22. [22]
    C. Bambi and K. Freese, Apparent shape of super-spinning black holes, Phys. Rev. D 79 (2009) 043002 [arXiv:0812.1328] [INSPIRE].
  23. [23]
    C. Bambi, K. Freese, S. Vagnozzi and L. Visinelli, Testing the rotational nature of the supermassive object M87* from the circularity and size of its first image, Phys. Rev. D 100 (2019) 044057 [arXiv:1904.12983] [INSPIRE].
  24. [24]
    Z. Li and C. Bambi, Measuring the Kerr spin parameter of regular black holes from their shadow, JCAP 01 (2014) 041 [arXiv:1309.1606] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Hioki and K.-i. Maeda, Measurement of the Kerr Spin Parameter by Observation of a Compact Object’s Shadow, Phys. Rev. D 80 (2009) 024042 [arXiv:0904.3575] [INSPIRE].
  26. [26]
    L. Amarilla, E.F. Eiroa and G. Giribet, Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity, Phys. Rev. D 81 (2010) 124045 [arXiv:1005.0607] [INSPIRE].
  27. [27]
    L. Amarilla and E.F. Eiroa, Shadow of a rotating braneworld black hole, Phys. Rev. D 85 (2012) 064019 [arXiv:1112.6349] [INSPIRE].
  28. [28]
    A. Yumoto, D. Nitta, T. Chiba and N. Sugiyama, Shadows of Multi-Black Holes: Analytic Exploration, Phys. Rev. D 86 (2012) 103001 [arXiv:1208.0635] [INSPIRE].
  29. [29]
    L. Amarilla and E.F. Eiroa, Shadow of a Kaluza-Klein rotating dilaton black hole, Phys. Rev. D 87 (2013) 044057 [arXiv:1301.0532] [INSPIRE].
  30. [30]
    P.G. Nedkova, V.K. Tinchev and S.S. Yazadjiev, Shadow of a rotating traversable wormhole, Phys. Rev. D 88 (2013) 124019 [arXiv:1307.7647] [INSPIRE].
  31. [31]
    V.K. Tinchev and S.S. Yazadjiev, Possible imprints of cosmic strings in the shadows of galactic black holes, Int. J. Mod. Phys. D 23 (2014) 1450060 [arXiv:1311.1353] [INSPIRE].
  32. [32]
    S.-W. Wei and Y.-X. Liu, Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole, JCAP 11 (2013) 063 [arXiv:1311.4251] [INSPIRE].
  33. [33]
    V. Perlick, O.Y. Tsupko and G.S. Bisnovatyi-Kogan, Influence of a plasma on the shadow of a spherically symmetric black hole, Phys. Rev. D 92 (2015) 104031 [arXiv:1507.04217] [INSPIRE].
  34. [34]
    Y. Huang, S. Chen and J. Jing, Double shadow of a regular phantom black hole as photons couple to the Weyl tensor, Eur. Phys. J.C 76 (2016) 594 [arXiv:1606.04634] [INSPIRE].
  35. [35]
    Z. Younsi, A. Zhidenko, L. Rezzolla, R. Konoplya and Y. Mizuno, New method for shadow calculations: Application to parametrized axisymmetric black holes, Phys. Rev. D 94 (2016) 084025 [arXiv:1607.05767] [INSPIRE].
  36. [36]
    A. Abdujabbarov, M. Amir, B. Ahmedov and S.G. Ghosh, Shadow of rotating regular black holes, Phys. Rev. D 93 (2016) 104004 [arXiv:1604.03809] [INSPIRE].
  37. [37]
    A. Abdujabbarov, L. Rezzolla and B. Ahmedov, A coordinate-independent characterization of a black hole shadow, Mon. Not. Roy. Astron. Soc.454 (2015) 2423 [arXiv:1503.09054] [INSPIRE].
  38. [38]
    F. Atamurotov and B. Ahmedov, Optical properties of black hole in the presence of plasma: shadow, Phys. Rev. D 92 (2015) 084005 [arXiv:1507.08131] [INSPIRE].
  39. [39]
    A. Abdujabbarov, F. Atamurotov, N. Dadhich, B. Ahmedov and Z. Stuchlík, Energetics and optical properties of 6-dimensional rotating black hole in pure Gauss-Bonnet gravity, Eur. Phys. J. C 75 (2015) 399 [arXiv:1508.00331] [INSPIRE].
  40. [40]
    F. Atamurotov, A. Abdujabbarov and B. Ahmedov, Shadow of rotating non-Kerr black hole, Phys. Rev. D 88 (2013) 064004 [INSPIRE].
  41. [41]
    R.A. Konoplya, Shadow of a black hole surrounded by dark matter, Phys. Lett. B 795 (2019) 1 [arXiv:1905.00064] [INSPIRE].
  42. [42]
    S.B. Giddings and D. Psaltis, Event Horizon Telescope Observations as Probes for Quantum Structure of Astrophysical Black Holes, Phys. Rev. D 97 (2018) 084035 [arXiv:1606.07814] [INSPIRE].
  43. [43]
    B.P. Singh and S.G. Ghosh, Shadow of Schwarzschild-Tangherlini black holes, Annals Phys. 395 (2018) 127 [arXiv:1707.07125] [INSPIRE].
  44. [44]
    U. Papnoi, F. Atamurotov, S.G. Ghosh and B. Ahmedov, Shadow of five-dimensional rotating Myers-Perry black hole, Phys. Rev. D 90 (2014) 024073 [arXiv:1407.0834] [INSPIRE].
  45. [45]
    M. Amir, B.P. Singh and S.G. Ghosh, Shadows of rotating five-dimensional charged EMCS black holes, Eur. Phys. J. C 78 (2018) 399 [arXiv:1707.09521] [INSPIRE].
  46. [46]
    S. Vagnozzi and L. Visinelli, Hunting for extra dimensions in the shadow of M87*, Phys. Rev. D 100 (2019) 024020 [arXiv:1905.12421] [INSPIRE].
  47. [47]
    T. Wang, A Rotating Kaluza-Klein black hole with squashed horizons, Nucl. Phys. B 756 (2006) 86 [hep-th/0605048] [INSPIRE].
  48. [48]
    H. Ishihara and J. Soda, Hawking radiation from squashed Kaluza-Klein black holes: A Window to extra dimensions, Phys. Rev. D 76 (2007) 064022 [hep-th/0702180] [INSPIRE].
  49. [49]
    S. Chen, B. Wang and R. Su, Hawking radiation in a rotating Kaluza-Klein black hole with squashed horizons, Phys. Rev. D 77 (2008) 024039 [arXiv:0710.3240] [INSPIRE].
  50. [50]
    X. He, B. Wang and S. Chen, Quasinormal modes of charged squashed Kaluza-Klein black holes in the Godel Universe, Phys. Rev. D 79 (2009) 084005 [arXiv:0811.2322] [INSPIRE].
  51. [51]
    X. He, S. Chen, B. Wang, R.G. Cai and C. Lin, Quasinormal modes in the background of charged Kaluza-Klein black hole with squashed horizons, Phys. Lett. B 665 (2008) 392 [arXiv:0802.2449] [INSPIRE].
  52. [52]
    H. Ishihara, M. Kimura, R.A. Konoplya, K. Murata, J. Soda and A. Zhidenko, Evolution of perturbations of squashed Kaluza-Klein black holes: escape from instability, Phys. Rev. D 77 (2008) 084019 [arXiv:0802.0655] [INSPIRE].
  53. [53]
    K. Matsuno and H. Ishihara, Geodetic Precession in Squashed Kaluza-Klein Black Hole Spacetimes, Phys. Rev. D 80 (2009) 104037 [arXiv:0909.0134] [INSPIRE].
  54. [54]
    L. Ji, S. Chen and J. Jing, Strong gravitational lensing in a rotating Kaluza-Klein black hole with squashed horizons, JHEP 03 (2014) 089 [arXiv:1312.4128] [INSPIRE].
  55. [55]
    M. Walker and R. Penrose, On quadratic first integrals of the geodesic equations for type {22} spacetimes, Commun. Math. Phys. 18 (1970) 265 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    V.P. Frolov and I.D. Novikov, Black hole physics: basic concepts and new developments, Kluwer Academic Publishers, Norwell U.S.A. (1998).Google Scholar
  57. [57]
    V. Perlick, O.Y. Tsupko and G.S. Bisnovatyi-Kogan, Influence of a plasma on the shadow of a spherically symmetric black hole, Phys. Rev. D 92 (2015) 104031 [arXiv:1507.04217] [INSPIRE].
  58. [58]
    S. Gillessen et al., Monitoring stellar orbits around the Massive Black Hole in the Galactic Center, Astrophys. J. 692 (2009) 1075 [arXiv:0810.4674] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Fen Long
    • 1
  • Jieci Wang
    • 1
  • Songbai Chen
    • 1
    • 2
    Email author
  • Jiliang Jing
    • 1
    • 2
  1. 1.Institute of Physics and Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and ApplicationsHunan Normal UniversityChangshaPeople’s Republic of China
  2. 2.Center for Gravitation and Cosmology, College of Physical Science and TechnologyYangzhou UniversityYangzhouChina

Personalised recommendations