Advertisement

Journal of High Energy Physics

, 2019:268 | Cite as

Propagator identities, holographic conformal blocks, and higher-point AdS diagrams

  • Christian Baadsgaard Jepsen
  • Sarthak ParikhEmail author
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

Conformal blocks are the fundamental, theory-independent building blocks in any CFT, so it is important to understand their holographic representation in the context of AdS/CFT. We describe how to systematically extract the holographic objects which compute higher-point global (scalar) conformal blocks in arbitrary spacetime dimensions, extending the result for the four-point block, known in the literature as a geodesic Witten diagram, to five- and six-point blocks. The main new tools which allow us to obtain such representations are various higher-point propagator identities, which can be interpreted as generalizations of the well-known flat space star-triangle identity, and which compute integrals over products of three bulk-to-bulk and/or bulk-to-boundary propagators in negatively curved spacetime. Using the holographic representation of the higher-point conformal blocks and higher-point propagator identities, we develop geodesic diagram techniques to obtain the explicit direct-channel conformal block decomposition of a broad class of higher-point AdS diagrams in a scalar effective bulk theory, with closed-form expressions for the decomposition coefficients. These methods require only certain elementary manipulations and no bulk integration, and furthermore provide quite trivially a simple algebraic origin of the logarithmic singularities of higher-point tree-level AdS diagrams. We also provide a more compact repackaging in terms of the spectral decomposition of the same diagrams, as well as an independent discussion on the closely related but computationally simpler framework over p-adics which admits comparable statements for all previously mentioned results.

Keywords

AdS-CFT Correspondence 1/N Expansion Conformal and W Symmetry Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys.76 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [INSPIRE].Google Scholar
  6. [6]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev.D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].
  8. [8]
    D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
  9. [9]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    O. Aharony, L.F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from Conformal Field Theory, JHEP07 (2017) 036 [arXiv:1612.03891] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    G. Mack, D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].
  12. [12]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP03 (2011) 025 [arXiv:1011.1485] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    A.L. Fitzpatrick and J. Kaplan, AdS Field Theory from Conformal Field Theory, JHEP02 (2013) 054 [arXiv:1208.0337] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks, JHEP01 (2016) 146 [arXiv:1508.00501] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal Bootstrap in Mellin Space, Phys. Rev. Lett.118 (2017) 081601 [arXiv:1609.00572] [INSPIRE].
  16. [16]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal bootstrap, JHEP05 (2017) 027 [arXiv:1611.08407] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    R. Gopakumar and A. Sinha, On the Polyakov-Mellin bootstrap, JHEP12 (2018) 040 [arXiv:1809.10975] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A Natural Language for AdS/CFT Correlators, JHEP11 (2011) 095 [arXiv:1107.1499] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    M.F. Paulos, Towards Feynman rules for Mellin amplitudes, JHEP10 (2011) 074 [arXiv:1107.1504] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  20. [20]
    D. Nandan, A. Volovich and C. Wen, On Feynman Rules for Mellin Amplitudes in AdS/CFT, JHEP05 (2012) 129 [arXiv:1112.0305] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    S. Kharel and G. Siopsis, Tree-level Correlators of scalar and vector fields in AdS/CFT, JHEP11 (2013) 159 [arXiv:1308.2515] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    V. Gon¸calves, J. Penedones and E. Trevisani, Factorization of Mellin amplitudes, JHEP10 (2015) 040 [arXiv:1410.4185] [INSPIRE].
  23. [23]
    C. Cardona, Mellin-(Schwinger) representation of One-loop Witten diagrams in AdS, arXiv:1708.06339 [INSPIRE].
  24. [24]
    E.Y. Yuan, Loops in the Bulk, arXiv:1710.01361 [INSPIRE].
  25. [25]
    E.Y. Yuan, Simplicity in AdS Perturbative Dynamics, arXiv:1801.07283 [INSPIRE].
  26. [26]
    K. Ghosh, Polyakov-Mellin Bootstrap for AdS loops, arXiv:1811.00504 [INSPIRE].
  27. [27]
    J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS Loops and 6j Symbols, JHEP03 (2019) 052 [arXiv:1808.00612] [INSPIRE].
  28. [28]
    S. Albayrak and S. Kharel, Towards the higher point holographic momentum space amplitudes, JHEP02 (2019) 040 [arXiv:1810.12459] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  29. [29]
    S. Albayrak, C. Chowdhury and S. Kharel, New relation for AdS amplitudes, arXiv:1904.10043 [INSPIRE].
  30. [30]
    S. Raju, BCFW for Witten Diagrams, Phys. Rev. Lett.106 (2011) 091601 [arXiv:1011.0780] [INSPIRE].
  31. [31]
    S. Raju, Recursion Relations for AdS/CFT Correlators, Phys. Rev.D 83 (2011) 126002 [arXiv:1102.4724] [INSPIRE].
  32. [32]
    S. Raju, New Recursion Relations and a Flat Space Limit for AdS/CFT Correlators, Phys. Rev.D 85 (2012) 126009 [arXiv:1201.6449] [INSPIRE].
  33. [33]
    S. Raju, Four Point Functions of the Stress Tensor and Conserved Currents in AdS 4/C F T 3, Phys. Rev.D 85 (2012) 126008 [arXiv:1201.6452] [INSPIRE].
  34. [34]
    S. Giombi, C. Sleight and M. Taronna, Spinning AdS Loop Diagrams: Two Point Functions, JHEP06 (2018) 030 [arXiv:1708.08404] [INSPIRE].
  35. [35]
    I. Bertan and I. Sachs, Loops in Anti-de Sitter Space, Phys. Rev. Lett.121 (2018) 101601 [arXiv:1804.01880] [INSPIRE].
  36. [36]
    I. Bertan, I. Sachs and E.D. Skvortsov, Quantum 𝜙4Theory in AdS 4and its CFT Dual, JHEP02 (2019) 099 [arXiv:1810.00907] [INSPIRE].
  37. [37]
    Y. Hikida, The masses of higher spin fields on AdS 4and conformal perturbation theory, Phys. Rev.D 94 (2016) 026004 [arXiv:1601.01784] [INSPIRE].
  38. [38]
    Y. Hikida and T. Wada, Marginal deformations of 3d supersymmetric U(N) model and broken higher spin symmetry, JHEP03 (2017) 047 [arXiv:1701.03563] [INSPIRE].
  39. [39]
    L.F. Alday and A. Bissi, Loop Corrections to Supergravity on AdS 5× S 5 , Phys. Rev. Lett.119 (2017) 171601 [arXiv:1706.02388] [INSPIRE].
  40. [40]
    F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Quantum Gravity from Conformal Field Theory, JHEP01 (2018) 035 [arXiv:1706.02822] [INSPIRE].
  41. [41]
    D. Ponomarev, E. Sezgin and E. Skvortsov, On one loop corrections in higher spin gravity, arXiv:1904.01042 [INSPIRE].
  42. [42]
    V. Gon¸calves, R. Pereira and X. Zhou, 20Five-Point Function from AdS 5× S 5Supergravity, arXiv:1906.05305 [INSPIRE].
  43. [43]
    G. Mack, Group Theoretical Approach to Conformal Invariant Quantum Field Theory, NATO Sci. Ser.B 5 (1974) 123 [INSPIRE].
  44. [44]
    G. Mack, Osterwalder-Schrader Positivity in Conformal Invariant Quantum Field Theory, Lect. Notes Phys.37 (1975) 66 [INSPIRE].
  45. [45]
    V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory, Lect. Notes Phys.63 (1977) 1 [INSPIRE].zbMATHCrossRefGoogle Scholar
  46. [46]
    V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical Derivation of Vacuum Operator Product Expansion in Euclidean Conformal Quantum Field Theory, Phys. Rev.D 13 (1976) 887 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for conformal algebra. Vacuum expectation values and operator products, Lett. Nuovo Cim.4S2 (1972) 115 [INSPIRE].
  48. [48]
    S. Ferrara, A.F. Grillo and G. Parisi, Nonequivalence between conformal covariant Wilson expansion in euclidean and Minkowski space, Lett. Nuovo Cim.5S2 (1972) 147 [INSPIRE].
  49. [49]
    S. Ferrara and G. Parisi, Conformal covariant correlation functions, Nucl. Phys.B 42 (1972) 281 [INSPIRE].
  50. [50]
    S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys.B 49 (1972) 77 [Erratum ibid.B 53 (1973) 643] [INSPIRE].
  51. [51]
    D. Simmons-Duffin, Projectors, Shadows and Conformal Blocks, JHEP04 (2014) 146 [arXiv:1204.3894] [INSPIRE].
  52. [52]
    S. Ferrara, A.F. Grillo and R. Gatto, Manifestly conformal covariant operator-product expansion, Lett. Nuovo Cim.2S2 (1971) 1363 [INSPIRE].
  53. [53]
    S. Ferrara, R. Gatto and A.F. Grillo, Properties of Partial Wave Amplitudes in Conformal Invariant Field Theories, Nuovo Cim.A 26 (1975) 226 [INSPIRE].
  54. [54]
    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.B 599 (2001) 459 [hep-th/0011040] [INSPIRE].
  55. [55]
    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys.B 678 (2004) 491 [hep-th/0309180] [INSPIRE].
  56. [56]
    F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE].
  57. [57]
    V. Rosenhaus, Multipoint Conformal Blocks in the Comb Channel, JHEP02 (2019) 142 [arXiv:1810.03244] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    J.-F. Fortin and W. Skiba, A recipe for conformal blocks, arXiv:1905.00036 [INSPIRE].
  59. [59]
    J.-F. Fortin and W. Skiba, New Methods for Conformal Correlation Functions, arXiv:1905.00434 [INSPIRE].
  60. [60]
    Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    A. Kaviraj, K. Sen and A. Sinha, Analytic bootstrap at large spin, JHEP11 (2015) 083 [arXiv:1502.01437] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    A. Kaviraj, K. Sen and A. Sinha, Universal anomalous dimensions at large spin and large twist, JHEP07 (2015) 026 [arXiv:1504.00772] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    L.F. Alday and A. Zhiboedov, An Algebraic Approach to the Analytic Bootstrap, JHEP04 (2017) 157 [arXiv:1510.08091] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    L.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett.119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    D. Simmons-Duffin, The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP03 (2017) 086 [arXiv:1612.08471] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP09 (2017) 078 [arXiv:1703.00278] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. [69]
    S. Albayrak, D. Meltzer and D. Poland, More Analytic Bootstrap: Nonperturbative Effects and Fermions, JHEP08 (2019) 040 [arXiv:1904.00032] [INSPIRE].ADSzbMATHGoogle Scholar
  70. [70]
    S. Parikh, Holographic dual of the five-point conformal block, JHEP05 (2019) 051 [arXiv:1901.01267] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    S.S. Gubser, J. Knaute, S. Parikh, A. Samberg and P. Witaszczyk, p-adic AdS/CFT, Commun. Math. Phys.352 (2017) 1019 [arXiv:1605.01061] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    S.S. Gubser and S. Parikh, Geodesic bulk diagrams on the Bruhat-Tits tree, Phys. Rev.D 96 (2017) 066024 [arXiv:1704.01149] [INSPIRE].
  73. [73]
    H. Liu, Scattering in anti-de Sitter space and operator product expansion, Phys. Rev.D 60 (1999) 106005 [hep-th/9811152] [INSPIRE].
  74. [74]
    M.S. Costa, V. Gon¸calves and J. Penedones, Spinning AdS Propagators, JHEP09 (2014) 064 [arXiv:1404.5625] [INSPIRE].
  75. [75]
    C. Sleight and M. Taronna, Spinning Witten Diagrams, JHEP06 (2017) 100 [arXiv:1702.08619] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  76. [76]
    X. Zhou, Recursion Relations in Witten Diagrams and Conformal Partial Waves, JHEP05 (2019) 006 [arXiv:1812.01006] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    L. Hoffmann, A.C. Petkou and W. Rühl, Aspects of the conformal operator product expansion in AdS/CFT correspondence, Adv. Theor. Math. Phys.4 (2002) 571 [hep-th/0002154] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  78. [78]
    C. Sleight and M. Taronna, Spinning Mellin Bootstrap: Conformal Partial Waves, Crossing Kernels and Applications, Fortsch. Phys.66 (2018) 1800038 [arXiv:1804.09334] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  79. [79]
    C. Sleight and M. Taronna, Anomalous Dimensions from Crossing Kernels, JHEP11 (2018) 089 [arXiv:1807.05941] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  80. [80]
    C. Cardona and K. Sen, Anomalous dimensions at finite conformal spin from OPE inversion, JHEP11 (2018) 052 [arXiv:1806.10919] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  81. [81]
    W. Li, Closed-form expression for cross-channel conformal blocks near the lightcone, arXiv:1906.00707 [INSPIRE].
  82. [82]
    H.-Y. Chen and H. Kyono, On Conformal Block, Crossing Kernel and Multi-variable Hypergeometric Functions, JHEP10 (2019) 149 [arXiv:1906.03135] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    M. Nishida and K. Tamaoka, Geodesic Witten diagrams with an external spinning field, PTEP2017 (2017) 053B06 [arXiv:1609.04563] [INSPIRE].
  84. [84]
    A. Castro, E. Llabŕes and F. Rejon-Barrera, Geodesic Diagrams, Gravitational Interactions & OPE Structures, JHEP06 (2017) 099 [arXiv:1702.06128] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  85. [85]
    E. Dyer, D.Z. Freedman and J. Sully, Spinning Geodesic Witten Diagrams, JHEP11 (2017) 060 [arXiv:1702.06139] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  86. [86]
    H.-Y. Chen, E.-J. Kuo and H. Kyono, Anatomy of Geodesic Witten Diagrams, JHEP05 (2017) 070 [arXiv:1702.08818] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  87. [87]
    P. Kraus, A. Maloney, H. Maxfield, G.S. Ng and J.-q. Wu, Witten Diagrams for Torus Conformal Blocks, JHEP09 (2017) 149 [arXiv:1706.00047] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  88. [88]
    K. Tamaoka, Geodesic Witten diagrams with antisymmetric tensor exchange, Phys. Rev.D 96 (2017) 086007 [arXiv:1707.07934] [INSPIRE].
  89. [89]
    M. Nishida and K. Tamaoka, Fermions in Geodesic Witten Diagrams, JHEP07 (2018) 149 [arXiv:1805.00217] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  90. [90]
    S. Das, Comments on spinning OPE blocks in AdS 3/C F T 2, Phys. Lett.B 792 (2019) 397 [arXiv:1811.09375] [INSPIRE].
  91. [91]
    A. Bhatta, P. Raman and N.V. Suryanarayana, Holographic Conformal Partial Waves as Gravitational Open Wilson Networks, JHEP06 (2016) 119 [arXiv:1602.02962] [INSPIRE].
  92. [92]
    A. Bhatta, P. Raman and N.V. Suryanarayana, Scalar Blocks as Gravitational Wilson Networks, JHEP12 (2018) 125 [arXiv:1806.05475] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  93. [93]
    E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP07 (2015) 131 [arXiv:1501.02260] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  94. [94]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  95. [95]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS 3gravity, JHEP12 (2015) 077 [arXiv:1508.04987] [INSPIRE].ADSzbMATHGoogle Scholar
  96. [96]
    M. Besken, A. Hegde, E. Hijano and P. Kraus, Holographic conformal blocks from interacting Wilson lines, JHEP08 (2016) 099 [arXiv:1603.07317] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  97. [97]
    K.B. Alkalaev and V.A. Belavin, Classical conformal blocks via AdS/CFT correspondence, JHEP08 (2015) 049 [arXiv:1504.05943] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  98. [98]
    K.B. Alkalaev and V.A. Belavin, Monodromic vs geodesic computation of Virasoro classical conformal blocks, Nucl. Phys.B 904 (2016) 367 [arXiv:1510.06685] [INSPIRE].
  99. [99]
    K.B. Alkalaev and V.A. Belavin, From global to heavy-light: 5-point conformal blocks, JHEP03 (2016) 184 [arXiv:1512.07627] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  100. [100]
    P. Banerjee, S. Datta and R. Sinha, Higher-point conformal blocks and entanglement entropy in heavy states, JHEP05 (2016) 127 [arXiv:1601.06794] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  101. [101]
    K.B. Alkalaev, Many-point classical conformal blocks and geodesic networks on the hyperbolic plane, JHEP12 (2016) 070 [arXiv:1610.06717] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  102. [102]
    K. Alkalaev and M. Pavlov, Perturbative classical conformal blocks as Steiner trees on the hyperbolic disk, JHEP02 (2019) 023 [arXiv:1810.07741] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  103. [103]
    K.B. Alkalaev and M. Pavlov, Four-point conformal blocks with three heavy background operators, JHEP08 (2019) 038 [arXiv:1905.03195] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  104. [104]
    M. D’Eramo, G. Parisi and L. Peliti, Theoretical Predictions for Critical Exponents at the Lambda Point of Bose Liquids, Lett. Nuovo Cim.2 (1971) 878 [INSPIRE].CrossRefGoogle Scholar
  105. [105]
    M. Heydeman, M. Marcolli, I. Saberi and B. Stoica, Tensor networks, p-adic fields and algebraic curves: arithmetic and the AdS 3/C F T 2correspondence, Adv. Theor. Math. Phys.22 (2018) 93 [arXiv:1605.07639] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  106. [106]
    E. Melzer, Nonarchimedean conformal field theories, Int. J. Mod. Phys.A 4 (1989) 4877 [INSPIRE].
  107. [107]
    S.S. Gubser, C. Jepsen, S. Parikh and B. Trundy, O(N) and O(N) and O(N), JHEP11 (2017) 107 [arXiv:1703.04202] [INSPIRE].
  108. [108]
    C.B. Jepsen and S. Parikh, p-adic Mellin Amplitudes, JHEP04 (2019) 101 [arXiv:1808.08333] [INSPIRE].
  109. [109]
    C.B. Jepsen and S. Parikh, Recursion Relations in p-adic Mellin Space, J. Phys.A 52 (2019) 285401 [arXiv:1812.09801] [INSPIRE].
  110. [110]
    M. Marcolli, Holographic Codes on Bruhat-Tits buildings and Drinfeld Symmetric Spaces, arXiv:1801.09623 [INSPIRE].
  111. [111]
    M. Heydeman, M. Marcolli, S. Parikh and I. Saberi, Nonarchimedean Holographic Entropy from Networks of Perfect Tensors, arXiv:1812.04057 [INSPIRE].
  112. [112]
    S.S. Gubser et al., Edge length dynamics on graphs with applications to p-adic AdS/CFT, JHEP06 (2017) 157 [arXiv:1612.09580] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  113. [113]
    A. Bhattacharyya, L.-Y. Hung, Y. Lei and W. Li, Tensor network and (p-adic) AdS/CFT, JHEP01 (2018) 139 [arXiv:1703.05445] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  114. [114]
    P. Dutta, D. Ghoshal and A. Lala, Notes on exchange interactions in holographic p –adic CFT, Phys. Lett.B 773 (2017) 283 [arXiv:1705.05678] [INSPIRE].
  115. [115]
    S.S. Gubser et al., Melonic theories over diverse number systems, Phys. Rev.D 98 (2018) 126007 [arXiv:1707.01087] [INSPIRE].
  116. [116]
    F. Qu and Y.-h. Gao, Scalar fields on pAdS, Phys. Lett.B 786 (2018) 165 [arXiv:1806.07035] [INSPIRE].
  117. [117]
    S.S. Gubser, C. Jepsen and B. Trundy, Spin in p-adic AdS/CFT, J. Phys.A 52 (2019) 144004 [arXiv:1811.02538] [INSPIRE].
  118. [118]
    L.-Y. Hung, W. Li and C.M. Melby-Thompson, Wilson line networks in p-adic AdS/CFT, JHEP05 (2019) 118 [arXiv:1812.06059] [INSPIRE].
  119. [119]
    L.-Y. Hung, W. Li and C.M. Melby-Thompson, p-adic CFT is a holographic tensor network, JHEP04 (2019) 170 [arXiv:1902.01411] [INSPIRE].
  120. [120]
    F.Q. Gouvêa, p-adic Numbers, in p-adic Numbers, pp. 43–85, Springer (1997).Google Scholar
  121. [121]
    B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, A Stereoscopic Look into the Bulk, JHEP07 (2016) 129 [arXiv:1604.03110] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  122. [122]
    J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP08 (2016) 162 [arXiv:1606.03307] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  123. [123]
    B. Carneiro da Cunha and M. Guica, Exploring the BTZ bulk with boundary conformal blocks, arXiv:1604.07383 [INSPIRE].
  124. [124]
    M. Guica, Bulk fields from the boundary OPE, arXiv:1610.08952 [INSPIRE].
  125. [125]
    Wolfram Research, Inc., Relations between contiguous functions for hypergeometric 3F 2functions, http://functions.wolfram.com/07.27.17.0007.01.
  126. [126]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Comments on 4 point functions in the CFT/AdS correspondence, Phys. Lett.B 452 (1999) 61 [hep-th/9808006] [INSPIRE].
  127. [127]
    E. D’Hoker, S.D. Mathur, A. Matusis and L. Rastelli, The Operator product expansion of N = 4 SYM and the 4 point functions of supergravity, Nucl. Phys.B 589 (2000) 38 [hep-th/9911222] [INSPIRE].
  128. [128]
    S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP09 (2010) 115 [arXiv:0912.3462] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  129. [129]
    X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight, Towards holographic higher-spin interactions: Four-point functions and higher-spin exchange, JHEP03 (2015) 170 [arXiv:1412.0016] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  130. [130]
    X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight, Quartic AdS Interactions in Higher-Spin Gravity from Conformal Field Theory, JHEP11 (2015) 149 [arXiv:1508.04292] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  131. [131]
    A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP10 (2012) 032 [arXiv:1112.4845] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  132. [132]
    A. Gadde, In search of conformal theories, arXiv:1702.07362 [INSPIRE].
  133. [133]
    Wolfram Research, Inc., Specific value of the hypergeometric 4F 3function, http://functions.wolfram.com/07.28.03.0050.01.
  134. [134]
    G.E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press (1999).
  135. [135]
    M. Milgram, 447 Instances of Hypergeometric 3F2(1), arXiv:1105.3126.

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Joseph Henry LaboratoriesPrinceton UniversityPrincetonU.S.A.
  2. 2.Division of Physics, Mathematics and AstronomyCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations