Advertisement

Journal of High Energy Physics

, 2019:266 | Cite as

A worldsheet supersymmetric Newton-Cartan string

  • Chris D.A. BlairEmail author
Open Access
Article
  • 5 Downloads

Abstract

We construct a (locally) supersymmetric worldsheet action for a string in a non-relativistic Newton-Cartan background. We do this using a doubled string action, which describes the target space geometry in an O(D, D) covariant manner using a doubled metric and doubled vielbeins. By adopting different parametrisations of these doubled background fields, we can describe both relativistic and non-relativistic geometries. We focus on the torsional Newton-Cartan geometry which can be obtained by null duality/reduction (such null duality is particularly simple for us to implement). The doubled action we use gives the Hamiltonian form of the supersymmetric Newton-Cartan string action automatically, from which we then obtain the equivalent Lagrangian. We extract geometric quantities of interest from the worldsheet couplings and write down the supersymmetry transformations. Our general results should apply to other non-relativistic backgrounds. We comment on the usefulness of the doubled approach as a tool for studying non-relativistic string theory.

Keywords

String Duality Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    T. Harmark, J. Hartong and N.A. Obers, Nonrelativistic strings and limits of the AdS/CFT correspondence, Phys. Rev.D 96 (2017) 086019 [arXiv:1705.03535] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    J. Klusoň, Hamiltonian for a string in a Newton-Cartan background, Phys. Rev.D 98 (2018) 086010 [arXiv:1801.10376] [INSPIRE].
  3. [3]
    E. Bergshoeff, J. Gomis and Z. Yan, Nonrelativistic String Theory and T-duality, JHEP11 (2018) 133 [arXiv:1806.06071] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    D. Hansen, J. Hartong and N.A. Obers, Action Principle for Newtonian Gravity, Phys. Rev. Lett.122 (2019) 061106 [arXiv:1807.04765] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Harmark, J. Hartong, L. Menculini, N.A. Obers and Z. Yan, Strings with Non-Relativistic Conformal Symmetry and Limits of the AdS/CFT Correspondence, JHEP11 (2018) 190 [arXiv:1810.05560] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    E.A. Bergshoeff, K.T. Grosvenor, C. Simsek and Z. Yan, An Action for Extended String Newton-Cartan Gravity, JHEP01 (2019) 178 [arXiv:1810.09387] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    J. Klusoň, Remark About Non-Relativistic String in Newton-Cartan Background and Null Reduction, JHEP05 (2018) 041 [arXiv:1803.07336] [INSPIRE].
  8. [8]
    J. Klusoň, Nonrelativistic String Theory σ-model and Its Canonical Formulation, Eur. Phys. J.C 79 (2019) 108 [arXiv:1809.10411] [INSPIRE].
  9. [9]
    J. Gomis, J. Oh and Z. Yan, Nonrelativistic String Theory in Background Fields, JHEP10 (2019) 101 [arXiv:1905.07315] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Klusoň, Note About Canonical Description of T-duality Along Light-Like Isometry, arXiv:1905.12910 [INSPIRE].
  11. [11]
    A.D. Gallegos, U. Gürsoy and N. Zinnato, Torsional Newton Cartan gravity from non-relativistic strings, arXiv:1906.01607 [INSPIRE].
  12. [12]
    T. Harmark, J. Hartong, L. Menculini, N.A. Obers and G. Oling, Relating non-relativistic string theories, arXiv:1907.01663 [INSPIRE].
  13. [13]
    E.A. Bergshoeff, J. Gomis, J. Rosseel, C. S¸im¸sek and Z. Yan, String Theory and String Newton-Cartan Geometry, arXiv:1907.10668 [INSPIRE].
  14. [14]
    D. Roychowdhury, Nonrelativistic pulsating strings, JHEP09 (2019) 002 [arXiv:1907.00584] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  15. [15]
    D. Roychowdhury, On integrability in nonrelativistic string theory, arXiv:1904.06485 [INSPIRE].
  16. [16]
    D. Roychowdhury, Probing tachyon kinks in Newton-Cartan background, Phys. Lett.B 795 (2019) 225 [arXiv:1903.05890] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Torsional Newton-Cartan Geometry and Lifshitz Holography, Phys. Rev.D 89 (2014) 061901 [arXiv:1311.4794] [INSPIRE].ADSzbMATHGoogle Scholar
  18. [18]
    M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Boundary Stress-Energy Tensor and Newton-Cartan Geometry in Lifshitz Holography, JHEP01 (2014) 057 [arXiv:1311.6471] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys.42 (2001) 3127 [hep-th/0009181] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    U.H. Danielsson, A. Guijosa and M. Kruczenski, IIA/B, wound and wrapped, JHEP10 (2000) 020 [hep-th/0009182] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    U.H. Danielsson, A. Guijosa and M. Kruczenski, Newtonian gravitons and D-brane collective coordinates in wound string theory, JHEP03 (2001) 041 [hep-th/0012183] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A.A. Tseytlin, Duality Symmetric Formulation of String World Sheet Dynamics, Phys. Lett.B 242 (1990) 163 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys.B 350 (1991) 395 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    C.M. Hull, A Geometry for non-geometric string backgrounds, JHEP10 (2005) 065 [hep-th/0406102] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    C.M. Hull, Doubled Geometry and T-Folds, JHEP07 (2007) 080 [hep-th/0605149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev.D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev.D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    C. Hull and B. Zwiebach, Double Field Theory, JHEP09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    K. Lee and J.-H. Park, Covariant action for a string in “doubled yet gauged” spacetime, Nucl. Phys.B 880 (2014) 134 [arXiv:1307.8377] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    S.M. Ko, C. Melby-Thompson, R. Meyer and J.-H. Park, Dynamics of Perturbations in Double Field Theory & Non-Relativistic String Theory, JHEP12 (2015) 144 [arXiv:1508.01121] [INSPIRE].ADSzbMATHGoogle Scholar
  31. [31]
    K. Morand and J.-H. Park, Classification of non-Riemannian doubled-yet-gauged spacetime, Eur. Phys. J.C 77 (2017) 685 [Erratum ibid.C 78 (2018) 901] [arXiv:1707.03713] [INSPIRE].
  32. [32]
    D.S. Berman, C.D.A. Blair and R. Otsuki, Non-Riemannian geometry of M-theory, JHEP07 (2019) 175 [arXiv:1902.01867] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    C.D.A. Blair, E. Malek and A.J. Routh, An O(D, D) invariant Hamiltonian action for the superstring, Class. Quant. Grav.31 (2014) 205011 [arXiv:1308.4829] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    J. Klusoň, (m, n)-String and D1-Brane in Stringy Newton-Cartan Background, JHEP04 (2019) 163 [arXiv:1901.11292] [INSPIRE].
  35. [35]
    J. Klusoň and P. Novosad, Non-Relativistic M2-Brane, JHEP06 (2019) 072 [arXiv:1903.12450] [INSPIRE].
  36. [36]
    J. Klusoň, Non-Relativistic D-brane from T-duality Along Null Direction, JHEP10 (2019) 153 [arXiv:1907.05662] [INSPIRE].
  37. [37]
    J.-H. Park, Green-Schwarz superstring on doubled-yet-gauged spacetime, JHEP11 (2016) 005 [arXiv:1609.04265] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    T.H. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett.B 194 (1987) 59 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    E. Hackett-Jones and G. Moutsopoulos, Quantum mechanics of the doubled torus, JHEP10 (2006) 062 [hep-th/0605114] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    S.F. Hassan, T duality, space-time spinors and RR fields in curved backgrounds, Nucl. Phys.B 568 (2000) 145 [hep-th/9907152] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  41. [41]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev.D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].ADSGoogle Scholar
  42. [42]
    O. Hohm and B. Zwiebach, On the Riemann Tensor in Double Field Theory, JHEP05 (2012) 126 [arXiv:1112.5296] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    D.S. Berman, N.B. Copland and D.C. Thompson, Background Field Equations for the Duality Symmetric String, Nucl. Phys.B 791 (2008) 175 [arXiv:0708.2267] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    N.B. Copland, A Double σ-model for Double Field Theory, JHEP04 (2012) 044 [arXiv:1111.1828] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    B.S. Kim, Non-relativistic superstring theories, Phys. Rev.D 76 (2007) 126013 [arXiv:0710.3203] [INSPIRE].ADSGoogle Scholar
  46. [46]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double Field Theory of Type II Strings, JHEP09 (2011) 013 [arXiv:1107.0008] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    I. Jeon, K. Lee, J.-H. Park and Y. Suh, Stringy Unification of Type IIA and IIB Supergravities under N = 2 D = 10 Supersymmetric Double Field Theory, Phys. Lett.B 723 (2013) 245 [arXiv:1210.5078] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    O. Hohm and S.K. Kwak, Double Field Theory Formulation of Heterotic Strings, JHEP06 (2011) 096 [arXiv:1103.2136] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    C.D.A. Blair, Doubled strings, negative strings and null waves, JHEP11 (2016) 042 [arXiv:1608.06818] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    R. Dijkgraaf, B. Heidenreich, P. Jefferson and C. Vafa, Negative Branes, Supergroups and the Signature of Spacetime, JHEP02 (2018) 050 [arXiv:1603.05665] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    J. Gomis and P.K. Townsend, The Galilean Superstring, JHEP02 (2017) 105 [arXiv:1612.02759] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    G. Aldazabal, D. Marques and C. Núñez, Double Field Theory: A Pedagogical Review, Class. Quant. Grav.30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    A.S. Arvanitakis and C.D.A. Blair, Unifying Type-II Strings by Exceptional Groups, Phys. Rev. Lett.120 (2018) 211601 [arXiv:1712.07115] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A.S. Arvanitakis and C.D.A. Blair, The Exceptional σ-model, JHEP04 (2018) 064 [arXiv:1802.00442] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    E. Bergshoeff, S. Randjbar-Daemi, A. Salam, H. Sarmadi and E. Sezgin, Locally Supersymmetric σ Model With Wess-Zumino Term in Two-dimensions and Critical Dimensions for Strings, Nucl. Phys.B 269 (1986) 77 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretische NatuurkundeVrije Universiteit Brussel, and the International Solvay InstitutesBrusselsBelgium

Personalised recommendations