Advertisement

Journal of High Energy Physics

, 2019:262 | Cite as

Single-jet inclusive rates with exact color at \( \mathcal{O} \) (\( {\alpha}_s^4 \))

  • Michał Czakon
  • Andreas van Hameren
  • Alexander Mitov
  • Rene PonceletEmail author
Open Access
Regular Article - Theoretical Physics
  • 1 Downloads

Abstract

Next-to-next-to-leading order QCD predictions for single-, double- and even triple-differential distributions of jet events in proton-proton collisions have recently been obtained using the NNLOjet framework based on antenna subtraction. These results are an important input for Parton Distribution Function fits to hadron-collider data. While these calculations include all of the partonic channels occurring at this order of the perturbative expansion, they are based on the leading-color approximation in the case of channels involving quarks and are only exact in color in the pure-gluon channel. In the present publication, we verify that the sub-leading color effects in the single-jet inclusive double- differential cross sections are indeed negligible as far as phenomenological applications are concerned. This is the first independent and complete calculation for this observable. We also take the opportunity to discuss the necessary modifications of the sector-improved residue subtraction scheme that made this work possible.

Keywords

Jets QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    CMS collaboration, Measurement of the double-differential inclusive jet cross section in proton–proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 76 (2016) 451 [arXiv:1605.04436] [INSPIRE].
  2. [2]
    S. Dittmaier, A. Huss and C. Speckner, Weak radiative corrections to dijet production at hadron colliders, JHEP11 (2012) 095 [arXiv:1210.0438] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP09 (2005) 056 [hep-ph/0505111] [INSPIRE].
  4. [4]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Quark-gluon antenna functions from neutralino decay, Phys. Lett.B 612 (2005) 36 [hep-ph/0501291] [INSPIRE].
  5. [5]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett.B 612 (2005) 49 [hep-ph/0502110] [INSPIRE].
  6. [6]
    A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP04 (2007) 016 [hep-ph/0612257] [INSPIRE].
  7. [7]
    A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP01 (2010) 118 [arXiv:0912.0374] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP02 (2011) 098 [arXiv:1011.6631] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP12 (2011) 049 [arXiv:1107.4037] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP10 (2012) 047 [arXiv:1207.5779] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Currie, E.W.N. Glover and S. Wells, Infrared structure at NNLO using antenna subtraction, JHEP04 (2013) 066 [arXiv:1301.4693] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna function for S → Q \( \overline{Q} \)q \( \overline{q} \)at NNLO QCD, JHEP06 (2011) 032 [arXiv:1105.0530] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna functions for S → Q \( \overline{Q} \)gg at NNLO QCD, JHEP10 (2013) 161 [arXiv:1309.6887] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Abelof and A. Gehrmann-De Ridder, Antenna subtraction for the production of heavy particles at hadron colliders, JHEP04 (2011) 063 [arXiv:1102.2443] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Abelof, O. Dekkers and A. Gehrmann-De Ridder, Antenna subtraction with massive fermions at NNLO: Double real initial-final configurations, JHEP12 (2012) 107 [arXiv:1210.5059] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G. Abelof, A. Gehrmann-De Ridder, P. Maierhofer and S. Pozzorini, NNLO QCD subtraction for top-antitop production in the qq channel, JHEP08 (2014) 035 [arXiv:1404.6493] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Currie et al., Jet cross sections at the LHC with NNLOJET, PoS(LL2018)001 [arXiv:1807.06057] [INSPIRE].
  18. [18]
    J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover and J. Pires, NNLO QCD corrections to jet production at hadron colliders from gluon scattering, JHEP01 (2014) 110 [arXiv:1310.3993] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and J. Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution, Phys. Rev. Lett.110 (2013) 162003 [arXiv:1301.7310] [INSPIRE].
  20. [20]
    J. Currie et al., Precise predictions for dijet production at the LHC, Phys. Rev. Lett.119 (2017) 152001 [arXiv:1705.10271] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Currie, E.W.N. Glover and J. Pires, Next-to-next-to leading order QCD predictions for single jet inclusive production at the LHC, Phys. Rev. Lett.118 (2017) 072002 [arXiv:1611.01460] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Gehrmann-De Ridder et al., Triple differential dijet cross section at the LHC, Phys. Rev. Lett.123 (2019) 102001 [arXiv:1905.09047] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Currie et al., Infrared sensitivity of single jet inclusive production at hadron colliders, JHEP10 (2018) 155 [arXiv:1807.03692] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k tjet clustering algorithm, JHEP04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Kluge, K. Rabbertz and M. Wobisch, FastNLO: Fast pQCD calculations for PDF fits, in the proceedings of Deep inelastic scattering, 14thInternational Workshop (DIS 2006), April 24–20, Tsukuba, Japan (2006), hep-ph/0609285 [INSPIRE].
  26. [26]
    fastNLO collaboration, Theory-data comparisons for jet measurements in hadron-induced processes, arXiv:1109.1310 [INSPIRE].
  27. [27]
    fastNLO collaboration, 20thinternational workshop on deep-inelastic scattering and related subjects, DESY-PROC-2012-02 (2012).Google Scholar
  28. [28]
    T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project, Eur. Phys. J.C 66 (2010) 503 [arXiv:0911.2985] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Somogyi, Z. Trócsányi and V. Del Duca, Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP06 (2005) 024 [hep-ph/0502226] [INSPIRE].
  30. [30]
    G. Somogyi, Z. Trócsányi and V. Del Duca, A subtraction scheme for computing QCD jet cross sections at NNLO: Regularization of doubly-real emissions, JHEP01 (2007) 070 [hep-ph/0609042] [INSPIRE].
  31. [31]
    G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP01 (2007) 052 [hep-ph/0609043] [INSPIRE].
  32. [32]
    U. Aglietti et al., Analytic integration of real-virtual counterterms in NNLO jet cross sections. I., JHEP09 (2008) 107 [arXiv:0807.0514] [INSPIRE].
  33. [33]
    V. Del Duca, G. Somogyi and Z. Trócsányi, Integration of collinear-type doubly unresolved counterterms in NNLO jet cross sections, JHEP06 (2013) 079 [arXiv:1301.3504] [INSPIRE].
  34. [34]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett.98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
  35. [35]
    R. Bonciani et al., The qT subtraction method for top quark production at hadron colliders, Eur. Phys. J.C 75 (2015) 581 [arXiv:1508.03585] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N-jettiness subtractions for NNLO QCD calculations, JHEP09 (2015) 058 [arXiv:1505.04794] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    R. Boughezal, C. Focke, X. Liu and F. Petriello, W -boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett.115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R. Boughezal, X. Liu and F. Petriello, Power corrections in the N-jettiness subtraction scheme, JHEP03 (2017) 160 [arXiv:1612.02911] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    I. Moult et al., Subleading power corrections for N-jettiness subtractions, Phys. Rev.D 95 (2017) 074023 [arXiv:1612.00450] [INSPIRE].
  40. [40]
    I. Moult et al., N-jettiness subtractions for gg → H at subleading power, Phys. Rev.D 97 (2018) 014013 [arXiv:1710.03227] [INSPIRE].
  41. [41]
    M.A. Ebert et al., Power corrections for N-jettiness subtractions at \( \mathcal{O} \) (α s), JHEP12 (2018) 084 [arXiv:1807.10764] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R. Boughezal, A. Isgrò and F. Petriello, Next-to-leading-logarithmic power corrections for N -jettiness subtraction in color-singlet production, Phys. Rev.D 97 (2018) 076006 [arXiv:1802.00456] [INSPIRE].
  43. [43]
    R. Boughezal, A. Isgrò and F. Petriello, Next-to-leading power corrections to V + 1 jet production in N -jettiness subtraction, arXiv:1907.12213 [INSPIRE].
  44. [44]
    M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett.B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys.B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Czakon and D. Heymes, Four-dimensional formulation of the sector-improved residue subtraction scheme, Nucl. Phys.B 890 (2014) 152 [arXiv:1408.2500] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  47. [47]
    F. Caola, K. Melnikov and R. R ontsch, Nested soft-collinear subtractions in NNLO QCD computations, Eur. Phys. J.C 77 (2017) 248 [arXiv:1702.01352] [INSPIRE].
  48. [48]
    F. Caola, K. Melnikov and R. Röntsch, Analytic results for color-singlet production at NNLO QCD with the nested soft-collinear subtraction scheme, Eur. Phys. J.C 79 (2019) 386 [arXiv:1902.02081] [INSPIRE].
  49. [49]
    F. Caola, K. Melnikov and R. Röntsch, Analytic results for decays of color singlets to gg and q \( \overline{q} \)final states at NNLO QCD with the nested soft-collinear subtraction scheme, arXiv:1907.05398 [INSPIRE].
  50. [50]
    M. Cacciari et al., Fully differential vector-boson-fusion Higgs production at next-to-next-to-leading order, Phys. Rev. Lett.115 (2015) 082002 [Erratum ibid.120 (2018) 139901] [arXiv:1506.02660] [INSPIRE].
  51. [51]
    J. Currie et al., N 3LO corrections to jet production in deep inelastic scattering using the Projection-to-Born method, JHEP05 (2018) 209 [arXiv:1803.09973] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    L. Magnea et al., Local analytic sector subtraction at NNLO, JHEP12 (2018) 107 [Erratum ibid.06 (2019) 013] [arXiv:1806.09570] [INSPIRE].
  53. [53]
    F. Herzog, Geometric IR subtraction for final state real radiation, JHEP08 (2018) 006 [arXiv:1804.07949] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    A. Behring, M. Czakon and R. Poncelet, Sector-improved residue subtraction: Improvements and Applications, PoS(LL2018)024 [arXiv:1808.07656] [INSPIRE].
  55. [55]
    R. Poncelet, Precision top-quark physics with leptonic final states, Ph.D. thesis, RWTH Aachen University, Aachen Germany (2018).Google Scholar
  56. [56]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].
  57. [57]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP06 (2002) 029 [hep-ph/0204244] [INSPIRE].
  58. [58]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    https://bitbucket.org/hameren/avhlibGoogle Scholar
  60. [60]
    M. Bury and A. van Hameren, Numerical evaluation of multi-gluon amplitudes for High Energy Factorization, Comput. Phys. Commun.196 (2015) 592 [arXiv:1503.08612] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Badger, B. Biedermann and P. Uwer, NGluon: a package to calculate one-loop multi-gluon amplitudes, Comput. Phys. Commun.182 (2011) 1674 [arXiv:1011.2900] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of virtual corrections to multi-jet production in massless QCD, Comput. Phys. Commun.184 (2013) 1981 [arXiv:1209.0100] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett.70 (1993) 2677 [hep-ph/9302280] [INSPIRE].
  64. [64]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to two quark three gluon amplitudes, Nucl. Phys.B 437 (1995) 259 [hep-ph/9409393] [INSPIRE].
  65. [65]
    Z. Kunszt, A. Signer and Z. Trócsányi, One loop radiative corrections to the helicity amplitudes of QCD processes involving four quarks and one gluon, Phys. Lett.B 336 (1994) 529 [hep-ph/9405386] [INSPIRE].
  66. [66]
    A. Broggio, A. Ferroglia, B.D. Pecjak and Z. Zhang, NNLO hard functions in massless QCD, JHEP12 (2014) 005 [arXiv:1409.5294] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    E.W.N. Glover and M.E. Tejeda-Yeomans, Two loop QCD helicity amplitudes for massless quark massless gauge boson scattering, JHEP06 (2003) 033 [hep-ph/0304169] [INSPIRE].
  68. [68]
    E.W.N. Glover, Two loop QCD helicity amplitudes for massless quark quark scattering, JHEP04 (2004) 021 [hep-ph/0401119] [INSPIRE].
  69. [69]
    Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for quark gluon scattering in QCD and gluino gluon scattering in supersymmetric Yang-Mills theory, JHEP06 (2003) 028 [Erratum ibid.04 (2014) 112] [hep-ph/0304168] [INSPIRE].
  70. [70]
    A. De Freitas and Z. Bern, Two-loop helicity amplitudes for quark-quark scattering in QCD and gluino-gluino scattering in supersymmetric Yang-Mills theory, JHEP09 (2004) 039 [hep-ph/0409007] [INSPIRE].
  71. [71]
    Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for gluon-gluon scattering in QCD and supersymmetric Yang-Mills theory, JHEP03 (2002) 018 [hep-ph/0201161] [INSPIRE].
  72. [72]
    M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, Phys. Rev. Lett.116 (2016) 082003 [arXiv:1511.00549] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    M. Czakon, D. Heymes and A. Mitov, Dynamical scales for multi-TeV top-pair production at the LHC, JHEP04 (2017) 071 [arXiv:1606.03350] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    S. Catani et al., Top-quark pair production at the LHC: Fully differential QCD predictions at NNLO, JHEP07 (2019) 100 [arXiv:1906.06535] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    A. Behring et al., Higher order corrections to spin correlations in top quark pair production at the LHC, Phys. Rev. Lett.123 (2019) 082001 [arXiv:1901.05407] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    ATLAS collaboration, Measurement of the inclusive jet cross-section in proton-proton collisions at \( \sqrt{s} \) = 7 TeV using 4.5 fb 1of data with the ATLAS detector, JHEP02 (2015) 153 [Erratum ibid.09 (2015) 141] [arXiv:1410.8857] [INSPIRE].
  77. [77]
    ATLAS collaboration, Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector, JHEP05 (2014) 059 [arXiv:1312.3524] [INSPIRE].
  78. [78]
    CMS collaboration, Measurement of the triple-differential dijet cross section in proton-proton collisions at \( \sqrt{s} \) = 8 TeV and constraints on parton distribution functions, Eur. Phys. J.C 77 (2017) 746 [arXiv:1705.02628] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Michał Czakon
    • 1
  • Andreas van Hameren
    • 2
  • Alexander Mitov
    • 3
  • Rene Poncelet
    • 3
    Email author
  1. 1.Institut für Theoretische Teilchenphysik und KosmologieRWTH Aachen UniversityAachenGermany
  2. 2.Institute of Nuclear PhysicsPolish Academy of SciencesCracowPoland
  3. 3.Cavendish LaboratoryUniversity of CambridgeCambridgeU.K.

Personalised recommendations