Journal of High Energy Physics

, 2019:259 | Cite as

Fermion mass hierarchy and phenomenology in the 5D Domain Wall Standard Model

  • Nobuchika Okada
  • Digesh Raut
  • Desmond VillalbaEmail author
Open Access
Regular Article - Theoretical Physics


We have recently proposed a setup of the “Domain-Wall Standard Model” in 5D spacetime, where all the Standard Model (SM) fields are localized in certain domains of the extra 5th dimension. Utilizing this setup, we attempt to solve the fermion mass hierarchy problem of the SM. The mass hierarchy can be naturally explained by suitably distributing the fermions in different positions along the extra dimension. Due to these different localization points, the effective 4D gauge couplings of Kaluza-Klein (KK) mode gauge bosons to the SM fermions become non-universal. As a result, our model is severely constrained by the Flavor Changing Neutral Current (FCNC) measurements. We find two interesting cases in which our model is phenomenologically viable: (1) the KK-mode of the SM gauge bosons are extremely heavy and unlikely to be produced at the Large Hadron Collider (LHC), while future FCNC measurements can reveal the existence of these heavy modes. (2) the width of the localized SM fermions is very narrow, leading to almost universal 4D KK-mode gauge couplings. In this case, the FCNC constraints can be easily avoided even if a KK gauge boson mass lies at the TeV scale. Such a light KK gauge boson can be searched at the LHC in the near future.


Phenomenology of Field Theories in Higher Dimensions Phenomenology of Large extra dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    J. Polchinski, Dirichlet Branes and Ramond-Ramond charges, Phys. Rev. Lett.75 (1995) 4724 [hep-th/9510017] [INSPIRE].
  2. [2]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett.B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].
  3. [3]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett.B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].
  4. [4]
    L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  5. [5]
    V.A. Rubakov and M.E. Shaposhnikov, Do We Live Inside a Domain Wall?, Phys. Lett.B 125 (1983) 136 [INSPIRE].
  6. [6]
    L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett.83 (1999) 4690 [hep-th/9906064] [INSPIRE].
  7. [7]
    G.R. Dvali and M.A. Shifman, Domain walls in strongly coupled theories, Phys. Lett.B 396 (1997) 64 [Erratum ibid.B 407 (1997) 452] [hep-th/9612128] [INSPIRE].
  8. [8]
    K. Ohta and N. Sakai, Non-Abelian Gauge Field Localized on Walls with Four-Dimensional World Volume, Prog. Theor. Phys.124 (2010) 71 [Erratum ibid.127 (2012) 1133] [arXiv:1004.4078] [INSPIRE].
  9. [9]
    N. Okada, D. Raut and D. Villalba, Domain-Wall Standard Model in non-compact 5D and LHC phenomenology, Mod. Phys. Lett.A 34 (2019) 1950080 [arXiv:1712.09323] [INSPIRE].
  10. [10]
    N. Okada, D. Raut and D. Villalba, Aspects of Domain-Wall Standard Model, arXiv:1801.03007 [INSPIRE].
  11. [11]
    M. Arai, F. Blaschke, M. Eto and N. Sakai, Localized non-Abelian gauge fields in non-compact extra-dimensions, PTEP2018 (2018) 063B02 [arXiv:1801.02498] [INSPIRE].
  12. [12]
    M. Arai, F. Blaschke, M. Eto and N. Sakai, Localization of the Standard Model via the Higgs mechanism and a finite electroweak monopole from non-compact five dimensions, PTEP2018 (2018) 083B04 [arXiv:1802.06649] [INSPIRE].
  13. [13]
    N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev.D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE].
  14. [14]
    B. Lillie and J.L. Hewett, Flavor constraints on split fermion models, Phys. Rev.D 68 (2003) 116002 [hep-ph/0306193] [INSPIRE].
  15. [15]
    J. Hisano and N. Okada, On effective theory of brane world with small tension, Phys. Rev.D 61 (2000) 106003 [hep-ph/9909555] [INSPIRE].
  16. [16]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev.D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].
  17. [17]
    S. Khalil and R. Mohapatra, Flavor violation and extra dimensions, Nucl. Phys.B 695 (2004) 313 [hep-ph/0402225] [INSPIRE].
  18. [18]
    L. Wolfenstein, C.J. Lin and E. Pianori, Tests of Conservation Laws, Scholar
  19. [19]
    LHCb collaboration, Measurement of the \( {B}_s^0 \)→ μ +μ branching fraction and effective lifetime and search for B 0→ μ +μ decays, Phys. Rev. Lett.118 (2017) 191801 [arXiv:1703.05747] [INSPIRE].
  20. [20]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  21. [21]
    E.P. Shabalin, Electric Dipole Moment of Quark in a Gauge Theory with Left-Handed Currents, Sov. J. Nucl. Phys.28 (1978) 75 [INSPIRE].
  22. [22]
    E.P. Shabalin, Electric Dipole Moment Of Quark In The Kobayashi-Maskawa Theory With Account Of The Gluonic Corrections, Sov. J. Nucl. Phys.31 (1980) 864.Google Scholar
  23. [23]
    T. Banks, Y. Nir and N. Seiberg, Missing (up) mass, accidental anomalous symmetries and the strong CP problem, in Yukawa couplings and the origins of mass. Proceedings of 2nd IFT Workshop, Gainesville U.S.A. (1994), pg. 26 [hep-ph/9403203] [INSPIRE].
  24. [24]
    V.D. Barger, T. Falk, T. Han, J. Jiang, T. Li and T. Plehn, CP violating phases in SUSY, electric dipole moments and linear colliders, Phys. Rev.D 64 (2001) 056007 [hep-ph/0101106] [INSPIRE].
  25. [25]
    K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev.D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].
  26. [26]
    ATLAS collaboration, Search for high-mass dilepton resonances using 139 fb 1of pp collision data collected at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett.B 796 (2019) 68 [arXiv:1903.06248] [INSPIRE].
  27. [27]
    CMS collaboration, Search for high-mass resonances in dilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP06 (2018) 120 [arXiv:1803.06292] [INSPIRE].
  28. [28]
    ATLAS collaboration, Search for a new heavy gauge boson resonance decaying into a lepton and missing transverse momentum in 79.8 fb 1of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS experiment, ATLAS-CONF-2018-017 (2018).Google Scholar
  29. [29]
    CMS collaboration, Search for high-mass resonances in final states with a lepton and missing transverse momentum at \( \sqrt{s} \) = 13 TeV, JHEP06 (2018) 128 [arXiv:1803.11133] [INSPIRE].
  30. [30]
    ATLAS collaboration, Search for new phenomena in dijet events using 37 fb 1of pp collision data collected at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev.D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Nobuchika Okada
    • 1
  • Digesh Raut
    • 2
  • Desmond Villalba
    • 3
    Email author
  1. 1.Department of Physics and AstronomyThe University of AlabamaTuscaloosaU.S.A.
  2. 2.Department of Physics and AstronomyThe University of DelawareNewarkU.S.A.
  3. 3.Department of Chemistry and PhysicsDrury UniversitySpringfieldU.S.A.

Personalised recommendations