Journal of High Energy Physics

, 2019:254 | Cite as

Conformally invariant boundary conditions in the antiferromagnetic Potts model and the SL(2, ℝ)/U(1) sigma model

  • Niall F. RobertsonEmail author
  • Jesper Lykke Jacobsen
  • Hubert Saleur
Open Access
Regular Article - Theoretical Physics


We initiate a study of the boundary version of the square-lattice Q-state Potts antiferromagnet, with Q ∈ [0, 4] real, motivated by the fact that the continuum limit of the corresponding bulk model is a non-compact CFT, closely related with the SL(2, ℝ)k/U(1) Euclidian black-hole coset model. While various types of conformal boundary conditions (discrete and continuous branes) have been formally identified for the the SL(2, ℝ)k/U(1) coset CFT, we are only able in this work to identify conformal boundary conditions (CBC) leading to a discrete boundary spectrum. The CBC we find are of two types. The first is free boundary Potts spins, for which we confirm an old conjecture for the generating functions of conformal levels, and show them to be related to characters in a non-linear deformation of the W algebra. The second type of CBC — which corresponds to restricting the values of the Potts spins to a subset of size Q1, or its complement of size Q − Q1, at alternating sites along the boundary — is new, and turns out to be conformal in the antiferromagnetic case only. In the following, we refer to these new boundary conditions as “alt” boundary conditions. Using algebraic and numerical techniques, we show that the corresponding spectrum generating functions produce all the characters of discrete representations for the coset CFT. The normalizability bounds of the associated discrete states in the coset CFT are found to have a simple interpretation in terms of boundary phase transitions in the lattice model. In the two-boundary case, with two distinct alt conditions, we obtain similar results, at least in the case when the corresponding boundary condition changing operator also inserts a number of defect lines. For \( \sqrt{Q} \) = 2 \( \cos \frac{\pi }{k} \), with k ≥ 3 integer, we show also how our boundary conditions can be reformulated in terms of a RSOS height model. The spectrum generating functions are then identified with string functions of the compact SU(2)k−2/U(1) parafermion theory (with symmetry Zk−2). The new alt conditions are needed to cover all the string functions. We provide an algebraic proof that the two-boundary alt conditions correctly produce the fusion rules of string functions. We expose in detail the special case of Q = 3 and its link with three-colourings of the square lattice and a corresponding boundary six-vertex model. Finally, we discuss the case of an odd number of sites (in the loop model) and the relation with wired boundary conditions (in the spin model). In this case the RSOS restriction produces the disorder operators of the parafermion theory.


Conformal and W Symmetry Boundary Quantum Field Theory Black Holes in String Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    R.J. Baxter, Critical antiferromagnetic square-lattice Potts model, Proc. Roy. Soc. London 383 (1982) 43.ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    H. Saleur, The Antiferromagnetic Potts model in two-dimensions: Berker-Kadanoff phases, antiferromagnetic transition and the role of Beraha numbers, Nucl. Phys. B 360 (1991) 219 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J.L. Jacobsen and H. Saleur, The antiferromagnetic transition for the square-lattice Potts model, Nucl. Phys. B 743 (2006) 207 [cond-mat/0512058] [INSPIRE].
  4. [4]
    M.P. Nightingale and M. Schick, Three-state square lattice Potts antiferromagnet, J. Phys. A 15 (1982) L39.ADSGoogle Scholar
  5. [5]
    J.-S. Wang, R.H. Swendsen and R. Kotecky, Antiferromagnetic Potts models, Phys. Rev. Lett. 63 (1989) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Y. Ikhlef, J. Jacobsen and H. Saleur, A staggered six-vertex model with non-compact continuum limit, Nucl. Phys. B 789 (2008) 483 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Y. Ikhlef, J.L. Jacobsen and H. Saleur, An integrable spin chain for the SL(2, ℝ)/U(1) black hole σ-model, Phys. Rev. Lett. 108 (2012) 081601 [arXiv:1109.1119] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    C. Candu and Y. Ikhlef, Nonlinear integral equations for the SL(2, ℝ)/U(1) black hole σ-model, J. Phys. A 46 (2013) 415401 [arXiv:1306.2646] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  9. [9]
    V.V. Bazhanov, G.A. Kotousov, S.M. Koval and S.L. Lukyanov, On the scaling behaviour of the alternating spin chain, JHEP 08 (2019) 087 [arXiv:1903.05033] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  10. [10]
    E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, String propagation in a black hole geometry, Nucl. Phys. B 371 (1992) 269 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    E. Vernier, J.L. Jacobsen and H. Saleur, Non compact continuum limit of two coupled Potts models, JSTAT 10 (2014) P10003 [arXiv:1406.1353].MathSciNetCrossRefGoogle Scholar
  13. [13]
    E. Vernier, J.L. Jacobsen and H. Saleur, Non compact conformal field theory and the \( a\frac{(2)}{2} \) (Izergin-Korepin) model in regime III, J. Phys. A 47 (2014) 285202 [arXiv:1404.4497] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  14. [14]
    E. Vernier, J.L. Jacobsen and H. Saleur, A new look at the collapse of two-dimensional polymers, JSTAT 09 (2015) P09001 [arXiv:1505.07007].MathSciNetCrossRefGoogle Scholar
  15. [15]
    R. Couvreur, E. Vernier, J.L. Jacobsen and H. Saleur, On truncations of the Chalker-Coddington model, Nucl. Phys. B 941 (2019) 507 [arXiv:1809.07429] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    S. Ribault and V. Schomerus, Branes in the 2 − D black hole, JHEP 02 (2004) 019 [hep-th/0310024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    Y. Ikhlef, J.L. Jacobsen and H. Saleur, A Temperley-Lieb quantum chain with two- and three-site interactions, J. Phys. A 42 (2009) 292002 [arXiv:0901.4685].MathSciNetzbMATHGoogle Scholar
  18. [18]
    Y. Ikhlef, J.L. Jacobsen and H. Saleur, The Z 2 staggered vertex model and its applications, J. Phys. A 43 (2010) 225201 [arXiv:0911.3003].ADSzbMATHMathSciNetGoogle Scholar
  19. [19]
    V.A. Fateev and A.B. Zamolodchikov, Parafermionic currents in the two-dimensional conformal quantum field theory and selfdual critical points in Z (n) invariant statistical systems, Sov. Phys. JETP 62 (1985) 215 [INSPIRE].Google Scholar
  20. [20]
    V. Pasquier, Two-dimensional critical systems labelled by Dynkin diagrams, Nucl. Phys. B 285 (1987) 162 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A.B. Zamolodchikov and V.A. Fateev, Disorder fields in two-dimensional conformal quantum field theory and N = 2 extended supersymmetry, Sov. Phys. JETP 63 (1986) 913 [INSPIRE].Google Scholar
  22. [22]
    R.J. Baxter, Potts model at the critical temperature, J. Phys. A 6 (1973) L445.ADSGoogle Scholar
  23. [23]
    C.M. Fortuin and P.W. Kasteleyn, On the Random cluster model. 1. Introduction and relation to other models, Physica 57 (1972) 536 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    R.J. Baxter, S.B. Kelland and F.Y. Wu, Equivalence of the Potts model or Whitney polynomial with an ice-type model, J. Phys. A 9 (1976) 397.ADSzbMATHGoogle Scholar
  25. [25]
    J.L. Jacobsen, Conformal field theory applied to loop models, in Polygons, Polyominoes and Polycubes, Guttman A.J. ed., Lecture Notes in Physics volume 775, Springer, Germany (2009).Google Scholar
  26. [26]
    G. Delfino and J. Viti, On three-point connectivity in two-dimensional percolation, J. Phys. A 44 (2011) 032001 [arXiv:1009.1314] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  27. [27]
    M. Picco, R. Santachiara, J. Viti and G. Delfino, Connectivities of Potts Fortuin-Kasteleyn clusters and time-like Liouville correlator, Nucl. Phys. B 875 (2013) 719 [arXiv:1304.6511] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Y. Ikhlef, J.L. Jacobsen and H. Saleur, Three-point functions in c ≤ 1 Liouville theory and conformal loop ensembles, Phys. Rev. Lett. 116 (2016) 130601 [arXiv:1509.03538] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M. Picco, S. Ribault and R. Santachiara, A conformal bootstrap approach to critical percolation in two dimensions, SciPost Phys. 1 (2016) 009 [arXiv:1607.07224] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Lykke Jacobsen and H. Saleur, Bootstrap approach to geometrical four-point functions in the two-dimensional critical Q-state Potts model: A study of the s-channel spectra, JHEP 01 (2019) 084 [arXiv:1809.02191] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    H.N.V. Temperley and E.T. Lieb, Relation between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with planar lattices: some exact results for the ‘percolation’ problem, Proc. Roy. Soc. London A 322 (1971) 251.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    J.L. Jacobsen and H. Saleur, Combinatorial aspects of boundary loop models, JSTAT 01 (2008) 01021 [arXiv:0709.0812].MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    P. Martin and H. Saleur, The Blob algebra and the periodic Temperley-Lieb algebra, Lett. Math. Phys. 30 (1994) 189 [hep-th/9302094] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    J.L. Jacobsen and H. Saleur, Conformal boundary loop models, Nucl. Phys. B 788 (2008) 137 [math-ph/0611078] [INSPIRE].
  35. [35]
    J. Dubail, J.L. Jacobsen and H. Saleur, Conformal two-boundary loop model on the annulus, Nucl. Phys. B 813 (2009) 430 [arXiv:0812.2746] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    I. Affleck, M. Oshikawa and H. Saleur, Boundary critical phenomena in the three-state Potts model, J. Phys. A 31 (1998) 5827 [cond-mat/9804117].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    S. Caracciolo et al., Fermionic field theory for trees and forests, Phys. Rev. Lett. 93 (2004) 080601 [cond-mat/0403271] [INSPIRE].
  38. [38]
    J.L. Jacobsen and H. Saleur, The Arboreal gas and the supersphere σ-model, Nucl. Phys. B 716 (2005) 439 [cond-mat/0502052] [INSPIRE].
  39. [39]
    V. Pasquier and H. Saleur, Common structures between finite systems and conformal field theories through quantum groups, Nucl. Phys. B 330 (1990) 523 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    S. Odake, Unitary representations of W () algebras, Int. J. Mod. Phys. A 7 (1992) 6339 [hep-th/9111058] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    I. Bakas and E. Kiritsis, Beyond the large N limit: nonlinear W () as symmetry of the SL(2, ℝ)/U(1) coset model, Int. J. Mod. Phys. A 7S1A (1992) 55 [hep-th/9109029] [INSPIRE].
  42. [42]
    D. Israel, A. Pakman and J. Troost, Extended SL(2, ℝ)/U(1) characters, or modular properties of a simple nonrational conformal field theory, JHEP 04 (2004) 043 [hep-th/0402085] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D. Israel, C. Kounnas, A. Pakman and J. Troost, The partition function of the supersymmetric two-dimensional black hole and little string theory, JHEP 06 (2004) 033 [hep-th/0403237] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    E. Vernier, J.L. Jacobsen and J. Salas, Q-colourings of the triangular lattice: exact exponents and conformal field theory, J. Phys. A 49 (2016) 174004 [arXiv:1509.02804] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  45. [45]
    J. de Gier and A. Nichols, The two-boundary Temperley-Lieb algebra, J. Algebra 321 (2009) 1132 [math/0703338].
  46. [46]
    V. Pasquier, Etiology of IRF Models, Commun. Math. Phys. 118 (1988) 355 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    G.E. Andrews, R.J. Baxter and P.J. Forrester, Eight vertex SOS model and generalized Rogers-Ramanujan type identities, J. Statist. Phys. 35 (1984) 193 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    D. Gepner and Z.-a. Qiu, Modular invariant partition functions for parafermionic field theories, Nucl. Phys. B 285 (1987) 423 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    J. Dubail, Conditions aux bords dans des théories conformes non unitaires, Ph.D. thesis, Université Paris Sud — Paris XI, Paris, France (2010).Google Scholar
  50. [50]
    J.L. Cardy, J.L. Jacobsen and A.D. Sokal, Unusual corrections to scaling in the 3 state Potts antiferromagnet on a square lattice, J. Statist. Phys. 105 (2001) 25 [cond-mat/0101197] [INSPIRE].
  51. [51]
    S.-K. Yang, Z (4) × Z (4) symmetry and parafermion operators in the selfdual critical Ashkin-Teller model, Nucl. Phys. B 285 (1987) 639 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R.J. Baxter, Exactly solved models in statistical mechanics, Academic Press, London, U.K. (1982).zbMATHGoogle Scholar
  53. [53]
    F. Ravanini and S.-K. Yang, C disorder fields and twist partition functions in parafermionic conformal field theories, Nucl. Phys. B 295 (1988) 262 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    E. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21 (1999) 2375.ADSMathSciNetzbMATHGoogle Scholar
  55. [55]
    K. Hosomichi, N = 2 Liouville theory with boundary, JHEP 12 (2006) 061 [hep-th/0408172] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. [56]
    S. Ribault, Discrete D-branes in AdS 3 and in the 2D black hole, JHEP 08 (2006) 015 [hep-th/0512238] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    T. Jayaraman, K.S. Narain and M.H. Sarmadi, SU(2)k WZW and Z k parafermion models on the torus, Nucl. Phys. B 343 (1990) 418 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    H. Saleur and M. Bauer, On some relations between local height probabilities and conformal invariance, Nucl. Phys. B 320 (1989) 591 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Université Paris-Saclay, CNRS, CEA, Institut de physique théoriqueGif-sur-YvetteFrance
  2. 2.Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne UniversitéUniversité de ParisParisFrance
  3. 3.Sorbonne Université, Ećole Normale Supérieure, CNRS, Laboratoire de Physique (LPENS)ParisFrance
  4. 4.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesU.S.A.

Personalised recommendations