Advertisement

Journal of High Energy Physics

, 2019:234 | Cite as

Statistical analysis of the azimuthal asymmetry in the J/πœ“ leptoproduction in unpolarized ep collisions

  • Hong-FeiΒ Zhang
  • Wen-LongΒ SangEmail author
  • Yu-PengΒ Yan
Open Access
Regular Article - Theoretical Physics
  • 28 Downloads

Abstract

In this paper, we study the azimuthal asymmetry in the J/πœ“ leptoproduction in unpolarized ep collisions. There are two independent azimuthal asymmetry modulations, namely cos(πœ“) and cos (2 πœ“), where πœ“ is the azimuthal angle of the lepton scattering plane with respect to the hadron-interacting plane. We calculate the two modulations as functions of four kinematic variables, and find that they provide a very good laboratory to distinguish several models describing the heavy quarkonium production, including the color-singlet (CS) model, the nonrelativistic QCD (NRQCD). In addition, this process can be used to test the magnitude of the \( {}^1{S}_0^{\left[8\right]} \) long-distance matrix element, which is extraordinarily large from various phenomenological extraction. In order to make definite conclusions, we restrict our calculation in a specific kinematic region, where the CS and CO mechanisms can be distinguished by scrutinizing the values of the cos(πœ“) modulation, while the \( {}^1{S}_0^{\left[8\right]} \) dominance picture can be tested by measuring the values of the cos (2 πœ“) modulation. Calculating their values and carrying out a meticulous statistical analysis, we find that at an integrated luminosity β„’ = 1000pbβˆ’1, the statistical uncertainties of the two quantities are small enough to tell the three models apart. When this experiment is implemented at the future ep colliders such as the EIC, crucial information for the J/πœ“ production mechanism might be discovered.

Keywords

Deep Inelastic Scattering (Phenomenology)Β QCD PhenomenologyΒ 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    L. Dick et al., Spin Effects in the Inclusive Reactions Ο€ Β±Polarized p β†’ Ο€ Β±Anything at 8. GeV/c, Phys. Lett.57B (1975) 93 [INSPIRE].
  2. [2]
    R.D. Klem et al., Measurement of Asymmetries of Inclusive Pion Production in Proton Proton Interactions at 6-GeV/c and 11.8-GeV/c, Phys. Rev. Lett.36 (1976) 929 [INSPIRE].
  3. [3]
    W.H. Dragoset et al., Asymmetries in Inclusive Proton-Nucleon Scattering at 11.75-GeV/c, Phys. Rev.D 18 (1978) 3939 [INSPIRE].
  4. [4]
    G. Bunce et al., Lambda0 Hyperon Polarization in Inclusive Production by 300-GeV Protons on Beryllium, Phys. Rev. Lett.36 (1976) 1113 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D.W. Sivers, Single Spin Production Asymmetries from the Hard Scattering of Point-Like Constituents, Phys. Rev.D 41 (1990) 83 [INSPIRE].ADSGoogle Scholar
  6. [6]
    D.W. Sivers, Hard scattering scaling laws for single spin production asymmetries, Phys. Rev.D 43 (1991) 261 [INSPIRE].ADSGoogle Scholar
  7. [7]
    J.C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions, Nucl. Phys.B 396 (1993) 161 [hep-ph/9208213] [INSPIRE].
  8. [8]
    J.C. Collins, S.F. Heppelmann and G.A. Ladinsky, Measuring transversity densities in singly polarized hadron hadron and lepton-hadron collisions, Nucl. Phys.B 420 (1994) 565 [hep-ph/9305309] [INSPIRE].
  9. [9]
    HERMES collaboration, Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target, Phys. Rev. Lett.94 (2005) 012002 [hep-ex/0408013] [INSPIRE].
  10. [10]
    COMPASS collaboration, First measurement of the transverse spin asymmetries of the deuteron in semi-inclusive deep inelastic scattering, Phys. Rev. Lett.94 (2005) 202002 [hep-ex/0503002] [INSPIRE].
  11. [11]
    COMPASS collaboration, A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target, Nucl. Phys.B 765 (2007) 31 [hep-ex/0610068] [INSPIRE].
  12. [12]
    HERMES collaboration, Azimuthal distributions of charged hadrons, pions and kaons produced in deep-inelastic scattering off unpolarized protons and deuterons, Phys. Rev.D 87 (2013) 012010 [arXiv:1204.4161] [INSPIRE].
  13. [13]
    COMPASS collaboration, Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons, Nucl. Phys.B 886 (2014) 1046 [arXiv:1401.6284] [INSPIRE].
  14. [14]
    R.N. Cahn, Azimuthal Dependence in Leptoproduction: A Simple Parton Model Calculation, Phys. Lett.78B (1978) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R.N. Cahn, Critique of Parton Model Calculations of Azimuthal Dependence in Leptoproduction, Phys. Rev.D 40 (1989) 3107 [INSPIRE].ADSGoogle Scholar
  16. [16]
    G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev.D 51 (1995) 1125 [Erratum ibid.D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].
  17. [17]
    Y.-J. Zhang, Y.-j. Gao and K.-T. Chao, Next-to-leading order QCD correction to e +e βˆ’β†’ J/πœ“ + Ξ· cat \( \sqrt{s} \) = 10.6 GeV, Phys. Rev. Lett.96 (2006) 092001 [hep-ph/0506076] [INSPIRE].
  18. [18]
    Y.-J. Zhang and K.-T. Chao, Double charm production e +e βˆ’β†’ J/πœ“ + c \( \overline{c} \)at B factories with next-to-leading order QCD correction, Phys. Rev. Lett.98 (2007) 092003 [hep-ph/0611086] [INSPIRE].
  19. [19]
    B. Gong and J.-X. Wang, QCD corrections to J/πœ“ plus Ξ· cproduction in e +e βˆ’annihilation at S (1/2) = 10.6-GeV, Phys. Rev.D 77 (2008) 054028 [arXiv:0712.4220] [INSPIRE].
  20. [20]
    B. Gong and J.-X. Wang, QCD corrections to double J/πœ“ production in e +e βˆ’annihilation at \( \sqrt{s} \) = 10.6-GeV, Phys. Rev. Lett.100 (2008) 181803 [arXiv:0801.0648] [INSPIRE].
  21. [21]
    Y.-Q. Ma, Y.-J. Zhang and K.-T. Chao, QCD correction to e +e βˆ’β†’ J/πœ“ + gg at B Factories, Phys. Rev. Lett.102 (2009) 162002 [arXiv:0812.5106] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    B. Gong and J.-X. Wang, Next-to-Leading-Order QCD Corrections to e +e βˆ’β†’ J/πœ“ gg at the B Factories, Phys. Rev. Lett.102 (2009) 162003 [arXiv:0901.0117] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    B. Gong and J.-X. Wang, Next-to-leading-order QCD corrections to e + eβˆ’ β†’ J/πœ“ c \( \overline{c} \)at the B factories, Phys. Rev.D 80 (2009) 054015 [arXiv:0904.1103] [INSPIRE].
  24. [24]
    Y.-J. Zhang, Y.-Q. Ma, K. Wang and K.-T. Chao, QCD radiative correction to color-octet J/πœ“ inclusive production at B Factories, Phys. Rev.D 81 (2010) 034015 [arXiv:0911.2166] [INSPIRE].
  25. [25]
    K. Wang, Y.-Q. Ma and K.-T. Chao, QCD corrections to e +e βˆ’β†’ J/πœ“ (πœ“ (2S)) + Ο‡ cj (J = 0, 1, 2) at B Factories, Phys. Rev.D 84 (2011) 034022 [arXiv:1107.2646] [INSPIRE].
  26. [26]
    Y. Feng, Z. Sun and H.-F. Zhang, Is the color-octet mechanism consistent with the double J/πœ“ production measurement at B-factories?, Eur. Phys. J.C 77 (2017) 221 [arXiv:1701.00969] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Y. Jiang and Z. Sun, Further studies on the exclusive productions of J/πœ“ + Ο‡ cJ(J = 0, 1, 2) via e +e βˆ’annihilation at the B factories, Eur. Phys. J.C 78 (2018) 892 [arXiv:1809.09071] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Q.-R. Gong, Z. Sun, H.-F. Zhang and X.-M. Mo, Ξ· cproduction associated with light hadrons at the B-factories and the future Super B-factories, Eur. Phys. J.C 76 (2016) 518 [arXiv:1606.08317] [INSPIRE].
  29. [29]
    M. Klasen, B.A. Kniehl, L.N. Mihaila and M. Steinhauser, J/πœ“ plus jet associated production in two-photon collisions at next-to-leading order, Nucl. Phys.B 713 (2005) 487 [hep-ph/0407014] [INSPIRE].
  30. [30]
    M. KrΓ€mer, QCD corrections to inelastic J/πœ“ photoproduction, Nucl. Phys.B 459 (1996) 3 [hep-ph/9508409] [INSPIRE].
  31. [31]
    F. Maltoni, M.L. Mangano and A. Petrelli, Quarkonium photoproduction at next-to-leading order, Nucl. Phys.B 519 (1998) 361 [hep-ph/9708349] [INSPIRE].
  32. [32]
    P. Artoisenet, J.M. Campbell, F. Maltoni and F. Tramontano, J/πœ“ production at HERA, Phys. Rev. Lett.102 (2009) 142001 [arXiv:0901.4352] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    C.-H. Chang, R. Li and J.-X. Wang, J/πœ“ polarization in photo-production up-to the next-to-leading order of QCD, Phys. Rev.D 80 (2009) 034020 [arXiv:0901.4749] [INSPIRE].
  34. [34]
    R. Li and K.-T. Chao, Photoproduction of J/πœ“ in association with a ccΜ„ pair, Phys. Rev.D 79 (2009) 114020 [arXiv:0904.1643] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Butenschoen and B.A. Kniehl, Complete next-to-leading-order corrections to J/πœ“ photoproduction in nonrelativistic quantum chromodynamics, Phys. Rev. Lett.104 (2010) 072001 [arXiv:0909.2798] [INSPIRE].
  36. [36]
    M. Butenschoen and B.A. Kniehl, Probing nonrelativistic QCD factorization in polarized J/πœ“ photoproduction at next-to-leading order, Phys. Rev. Lett.107 (2011) 232001 [arXiv:1109.1476] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G.T. Bodwin, H.S. Chung, U.-R. Kim and J. Lee, Fragmentation contributions to J/πœ“ photoproduction at HERA, Phys. Rev.D 92 (2015) 074042 [arXiv:1504.06019] [INSPIRE].
  38. [38]
    J.M. Campbell, F. Maltoni and F. Tramontano, QCD corrections to J/πœ“ and Ξ₯ production at hadron colliders, Phys. Rev. Lett.98 (2007) 252002 [hep-ph/0703113] [INSPIRE].
  39. [39]
    B. Gong and J.-X. Wang, Next-to-leading-order QCD corrections to J/πœ“ polarization at Tevatron and Large-Hadron-Collider energies, Phys. Rev. Lett.100 (2008) 232001 [arXiv:0802.3727] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    B. Gong and J.-X. Wang, QCD corrections to polarization of J/πœ“ and Ο… at Tevatron and LHC, Phys. Rev.D 78 (2008) 074011 [arXiv:0805.2469] [INSPIRE].
  41. [41]
    B. Gong, X.Q. Li and J.-X. Wang, QCD corrections to J/πœ“ production via color octet states at Tevatron and LHC, Phys. Lett.B 673 (2009) 197 [Erratum ibid.B 693 (2010) 612] [arXiv:0805.4751] [INSPIRE].
  42. [42]
    Y.-Q. Ma, K. Wang and K.-T. Chao, J/πœ“ (πœ“β€²) production at the Tevatron and LHC at \( \mathcal{O} \) (\( {\alpha}_s^4{\upsilon}^4 \)) in nonrelativistic QCD, Phys. Rev. Lett.106 (2011) 042002 [arXiv:1009.3655] [INSPIRE].
  43. [43]
    M. Butenschoen and B.A. Kniehl, Reconciling J/πœ“ production at HERA, RHIC, Tevatron and LHC with NRQCD factorization at next-to-leading order, Phys. Rev. Lett.106 (2011) 022003 [arXiv:1009.5662] [INSPIRE].
  44. [44]
    Y.-Q. Ma, K. Wang and K.-T. Chao, A complete NLO calculation of the J/πœ“ and πœ“ 1production at hadron colliders, Phys. Rev.D 84 (2011) 114001 [arXiv:1012.1030] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Butenschoen and B.A. Kniehl, World data of J/πœ“ production consolidate NRQCD factorization at NLO, Phys. Rev.D 84 (2011) 051501 [arXiv:1105.0820] [INSPIRE].
  46. [46]
    M. Butenschoen and B.A. Kniehl, J/πœ“ polarization at Tevatron and LHC: Nonrelativistic-QCD factorization at the crossroads, Phys. Rev. Lett.108 (2012) 172002 [arXiv:1201.1872] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    K.-T. Chao, Y.-Q. Ma, H.-S. Shao, K. Wang and Y.-J. Zhang, J/πœ“ Polarization at Hadron Colliders in Nonrelativistic QCD, Phys. Rev. Lett.108 (2012) 242004 [arXiv:1201.2675] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B. Gong, L.-P. Wan, J.-X. Wang and H.-F. Zhang, Polarization for Prompt J/πœ“ and πœ“ (2s) Production at the Tevatron and LHC, Phys. Rev. Lett.110 (2013) 042002 [arXiv:1205.6682] [INSPIRE].
  49. [49]
    B. Gong, J.-P. Lansberg, C. Lorce and J. Wang, Next-to-leading-order QCD corrections to the yields and polarisations of J/Ξ¨ and Ξ₯ directly produced in association with a Z boson at the LHC, JHEP03 (2013) 115 [arXiv:1210.2430] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J.-P. Lansberg and H.-S. Shao, Production of J/πœ“ + Ξ· cversus J/πœ“ + J/πœ“ at the LHC: Importance of Real \( {\alpha}_s^5 \)Corrections, Phys. Rev. Lett.111 (2013) 122001 [arXiv:1308.0474] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    R. Li and J.-X. Wang, Next-to-leading-order study of the associated production of J/πœ“ + Ξ³ at the LHC, Phys. Rev.D 89 (2014) 114018 [arXiv:1401.6918] [INSPIRE].ADSGoogle Scholar
  52. [52]
    G.T. Bodwin, H.S. Chung, U.-R. Kim and J. Lee, Fragmentation contributions to J/πœ“ production at the Tevatron and the LHC, Phys. Rev. Lett.113 (2014) 022001 [arXiv:1403.3612] [INSPIRE].
  53. [53]
    J.-P. Lansberg and H.-S. Shao, J/πœ“ -pair production at large momenta: Indications for double parton scatterings and large \( {\alpha}_s^5 \)contributions, Phys. Lett.B 751 (2015) 479 [arXiv:1410.8822] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    H.S. Shao, H. Han, Y.Q. Ma, C. Meng, Y.J. Zhang and K.T. Chao, Yields and polarizations of prompt J/πœ“ and πœ“ (2S) production in hadronic collisions, JHEP05 (2015) 103 [arXiv:1411.3300] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    Z. Sun and H.-F. Zhang, Reconciling charmonium production and polarization data in the midrapidity region at hadron colliders within the nonrelativistic QCD framework, Chin. Phys.C 42 (2018) 043104 [arXiv:1505.02675] [INSPIRE].
  56. [56]
    G.T. Bodwin, K.-T. Chao, H.S. Chung, U.-R. Kim, J. Lee and Y.-Q. Ma, Fragmentation contributions to hadroproduction of promptJ/πœ“, Ο‡ cJand πœ“ (2S) states, Phys. Rev.D 93 (2016) 034041 [arXiv:1509.07904] [INSPIRE].
  57. [57]
    Y. Feng and H.-F. Zhang, Double longitudinal-spin asymmetries in J/πœ“ production at RHIC, JHEP11 (2018) 136 [arXiv:1809.04894] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Butenschoen, Z.-G. He and B.A. Kniehl, Ξ· cproduction at the LHC challenges nonrelativistic-QCD factorization, Phys. Rev. Lett.114 (2015) 092004 [arXiv:1411.5287] [INSPIRE].
  59. [59]
    H. Han, Y.-Q. Ma, C. Meng, H.-S. Shao and K.-T. Chao, Ξ· cproduction at LHC and indications on the understanding of J/πœ“ production, Phys. Rev. Lett.114 (2015) 092005 [arXiv:1411.7350] [INSPIRE].
  60. [60]
    H.-F. Zhang, Z. Sun, W.-L. Sang and R. Li, Impact of Ξ· chadroproduction data on charmonium production and polarization within NRQCD framework, Phys. Rev. Lett.114 (2015) 092006 [arXiv:1412.0508] [INSPIRE].
  61. [61]
    J.-P. Lansberg, H.-S. Shao and H.-F. Zhang, \( {\eta}_c^{\prime } \)Hadroproduction at Next-to-Leading Order and its Relevance to πœ“ 1Production, Phys. Lett.B 786 (2018) 342 [arXiv:1711.00265] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    Y. Feng, J. He, J.-P. Lansberg, H.-S. Shao, A. Usachov and H.-F. Zhang, Phenomenological NLO analysis of Ξ· cproduction at the LHC in the collider and fixed-target modes, Nucl. Phys.B 945 (2019) 114662 [arXiv:1901.09766] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    Y.-Q. Ma, K. Wang and K.-T. Chao, QCD radiative corrections to Ο‡ cJproduction at hadron colliders, Phys. Rev.D 83 (2011) 111503 [arXiv:1002.3987] [INSPIRE].ADSGoogle Scholar
  64. [64]
    D. Li, Y.-Q. Ma and K.-T. Chao, Ο‡ cJproduction associated with a c \( \overline{c} \)pair at hadron colliders, Phys. Rev.D 83 (2011) 114037 [arXiv:1106.4262] [INSPIRE].
  65. [65]
    H.-S. Shao and K.-T. Chao, Spin correlations in polarizations of P-wave charmonia Ο‡ cJand impact on J/πœ“ polarization, Phys. Rev.D 90 (2014) 014002 [arXiv:1209.4610] [INSPIRE].
  66. [66]
    H.-S. Shao, Y.-Q. Ma, K. Wang and K.-T. Chao, Polarizations of Ο‡ c1and Ο‡ c2in prompt production at the LHC, Phys. Rev. Lett.112 (2014) 182003 [arXiv:1402.2913] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    H.-F. Zhang, L. Yu, S.-X. Zhang and L. Jia, Global analysis of the experimental data on Ο‡ cmeson hadroproduction, Phys. Rev.D 93 (2016) 054033 [arXiv:1410.4032] [INSPIRE].
  68. [68]
    Z. Sun and H.-F. Zhang, QCD corrections to the color-singlet J/πœ“ production in deeply inelastic scattering at HERA, Phys. Rev.D 96 (2017) 091502 [arXiv:1705.05337] [INSPIRE].
  69. [69]
    S. Barsuk, J. He, E. Kou and B. Viaud, Investigating charmonium production at LHC with the p pbar final state, Phys. Rev.D 86 (2012) 034011 [arXiv:1202.2273] [INSPIRE].
  70. [70]
    LHCb collaboration, Measurement of the Ξ· c (1S) production cross-section in proton-proton collisions via the decay Ξ· c (1S) β†’ p \( \overline{p} \), Eur. Phys. J.C 75 (2015) 311 [arXiv:1409.3612] [INSPIRE].
  71. [71]
    H.-F. Zhang, Y. Feng, W.-L. Sang and Y.-P. Yan, Kinematic distributions of the Ξ· cphotoproduction in ep collisions within the nonrelativistic QCD framework, Phys. Rev.D 99 (2019) 114018 [arXiv:1902.09056] [INSPIRE].ADSGoogle Scholar
  72. [72]
    H.-F. Zhang and Z. Sun, Leptonic current structure and azimuthal asymmetry in deeply inelastic scattering, Phys. Rev.D 96 (2017) 034002 [arXiv:1701.08728] [INSPIRE].
  73. [73]
    Z. Sun and H.-F. Zhang, QCD leading order study of the J/πœ“ leptoproduction at HERA within the nonrelativistic QCD framework, Eur. Phys. J.C 77 (2017) 744 [arXiv:1702.02097] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    M. Gluck, E. Reya and A. Vogt, Dynamical parton distributions of the proton and small x physics, Z. Phys.C 67 (1995) 433 [INSPIRE].ADSGoogle Scholar
  75. [75]
    E.J. Eichten and C. Quigg, Quarkonium wave functions at the origin, Phys. Rev.D 52 (1995) 1726 [hep-ph/9503356] [INSPIRE].
  76. [76]
    U. D’Alesio, F. Murgia, C. Pisano and P. Taels, Azimuthal asymmetries in semi-inclusive J/πœ“ + jet production at an EIC, arXiv:1908.00446 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Hong-FeiΒ Zhang
    • 1
  • Wen-LongΒ Sang
    • 2
    Email author
  • Yu-PengΒ Yan
    • 3
  1. 1.College of Big Data StatisticsGuizhou University of Finance and EconomicsGuiyangChina
  2. 2.School of Physical Science and TechnologySouthwest UniversityChongqingChina
  3. 3.School of Physics and Center of Excellence in High Energy Physics & AstrophysicsSuranaree University of TechnologyNakhon RatchasimaThailand

Personalised recommendations