Advertisement

Journal of High Energy Physics

, 2019:231 | Cite as

Spin-2 excitations in Gaiotto-Maldacena solutions

  • Georgios Itsios
  • José Manuel Penín
  • Salomón ZacaríasEmail author
Open Access
Regular Article - Theoretical Physics
  • 40 Downloads

Abstract

In this paper we study spin-2 excitations for a class of N = 2 supersymmetric solutions of type-IIA supergravity found by Gaiotto and Maldacena. The mass spectrum of these excitations can be derived by solving a second order partial differential equation. As specific examples of this class we consider the Abelian and non-Abelian T-dual versions of the AdS5 × S5 and we study the corresponding mass spectra. For the modes that do not “feel” the (non-)Abelian T-duality transformation we provide analytic formulas for the masses, while for the rest we were only able to derive the spectra numerically. The numerical values that correspond to large masses are compared with WKB approximate formulas. We also find a lower bound for the masses. Finally, we study the field theoretical implications of our results and propose dual spin-2 operators.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  2. [2]
    D. Gaiotto, N = 2 dualities, JHEP08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. Gaiotto and J. Maldacena, The Gravity duals of N = 2 superconformal field theories, JHEP10 (2012) 189 [arXiv:0904.4466] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP10 (2004) 025 [hep-th/0409174] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    O. Aharony, L. Berdichevsky and M. Berkooz, 4d N = 2 superconformal linear quivers with type IIA duals, JHEP08 (2012) 131 [arXiv:1206.5916] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    C. Núñez, D. Roychowdhury, S. Speziali and S. Zacarías, Holographic Aspects of Four Dimensional \( \mathcal{N} \) = 2 SCFTs and their Marginal Deformations, Nucl. Phys.B 943 (2019) 114617 [arXiv:1901.02888] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    R.A. Reid-Edwards and B. Stefański Jr., On Type IIA geometries dual to N = 2 SCFTs, Nucl. Phys.B 849 (2011) 549 [arXiv:1011.0216] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    P.M. Petropoulos, K. Sfetsos and K. Siampos, Gravity duals of \( \mathcal{N} \) = 2 SCFTs and asymptotic emergence of the electrostatic description, JHEP09 (2014) 057 [arXiv:1406.0853] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P.M. Petropoulos, K. Sfetsos and K. Siampos, Gravity duals of \( \mathcal{N} \) = 2 superconformal field theories with no electrostatic description, JHEP11 (2013) 118 [arXiv:1308.6583] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    K. Sfetsos and D.C. Thompson, On non-abelian T-dual geometries with Ramond fluxes, Nucl. Phys.B 846 (2011) 21 [arXiv:1012.1320] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    C. Bachas and J. Estes, Spin-2 spectrum of defect theories, JHEP06 (2011) 005 [arXiv:1103.2800] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Passias and P. Richmond, Perturbing AdS 6× wS 4: linearised equations and spin-2 spectrum, JHEP07 (2018) 058 [arXiv:1804.09728] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Passias and A. Tomasiello, Spin-2 spectrum of six-dimensional field theories, JHEP12 (2016) 050 [arXiv:1604.04286] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    J.-M. Richard, R. Terrisse and D. Tsimpis, On the spin-2 Kaluza-Klein spectrum of AdS4× S 2 (B 4), JHEP12 (2014) 144 [arXiv:1410.4669] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Gutperle, C.F. Uhlemann and O. Varela, Massive spin 2 excitations in AdS 6× S 2warped spacetimes, JHEP07 (2018) 091 [arXiv:1805.11914] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Chen, M. Gutperle and C.F. Uhlemann, Spin 2 operators in holographic 4d \( \mathcal{N} \) = 2 SCFTs, JHEP06 (2019) 139 [arXiv:1903.07109] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    A. Fayyazuddin and D.J. Smith, Localized intersections of M5-branes and four-dimensional superconformal field theories, JHEP04 (1999) 030 [hep-th/9902210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    Y. Lozano and C. Núñez, Field theory aspects of non-Abelian T-duality and \( \mathcal{N} \) = 2 linear quivers, JHEP05 (2016) 107 [arXiv:1603.04440] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. Núñez, D. Roychowdhury and D.C. Thompson, Integrability and non-integrability in \( \mathcal{N} \) = 2 SCFTs and their holographic backgrounds, JHEP07 (2018) 044 [arXiv:1804.08621] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Borsato and L. Wulff, On non-abelian T-duality and deformations of supercoset string σ-models, JHEP10 (2017) 024 [arXiv:1706.10169] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    L. Wulff, Constraining integrable AdS/CFT with factorized scattering, JHEP04 (2019) 133 [arXiv:1903.08660] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    J. van Gorsel and S. Zacarías, A Type IIB Matrix Model via non-Abelian T-dualities, JHEP12 (2017) 101 [arXiv:1711.03419] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    G. Itsios, H. Nastase, C. Núñez, K. Sfetsos and S. Zacarías, Penrose limits of Abelian and non-Abelian T-duals of AdS 5× S 5and their field theory duals, JHEP01 (2018) 071 [arXiv:1711.09911] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Hernandez, K. Sfetsos and D. Zoakos, Gravity duals for the Coulomb branch of marginally deformed N = 4 Yang-Mills, JHEP03 (2006) 069 [hep-th/0510132] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  25. [25]
    R. Hernandez, K. Sfetsos and D. Zoakos, On supersymmetry and other properties of a class of marginally deformed backgrounds, Fortsch. Phys.54 (2006) 407 [hep-th/0512158] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Polishchuk, Massive symmetric tensor field on AdS, JHEP07 (1999) 007 [hep-th/9905048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    I.L. Buchbinder, V.A. Krykhtin and V.D. Pershin, On consistent equations for massive spin two field coupled to gravity in string theory, Phys. Lett.B 466 (1999) 216 [hep-th/9908028] [INSPIRE].ADSzbMATHGoogle Scholar
  28. [28]
    F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, New York, NY, U.S.A., 1st edition (2010).zbMATHGoogle Scholar
  29. [29]
    H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, The Mass Spectrum of Chiral N = 2 D = 10 Supergravity on S 5 , Phys. Rev.D 32 (1985) 389 [INSPIRE].ADSGoogle Scholar
  30. [30]
    J.G. Russo and K. Sfetsos, Rotating D3-branes and QCD in three-dimensions, Adv. Theor. Math. Phys.3 (1999) 131 [hep-th/9901056] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, JHEP03 (2019) 163 [arXiv:1612.00809] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A. Gadde, E. Pomoni and L. Rastelli, Spin Chains in N = 2 Superconformal Theories: From the Z 2Quiver to Superconformal QCD, JHEP06 (2012) 107 [arXiv:1006.0015] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Georgios Itsios
    • 1
  • José Manuel Penín
    • 2
  • Salomón Zacarías
    • 3
    Email author
  1. 1.Instituto de Física TeóricaUNESP-Universidade Estadual PaulistaSao PauloBrazil
  2. 2.Departamento de Física de Partículas and Instituto Galego de Física de Altas Enerxías (IGFAE)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Shanghai Center for Complex Physics, Department of Physics and AstronomyShanghai JiaoTong UniversityShanghaiChina

Personalised recommendations