Advertisement

Journal of High Energy Physics

, 2019:212 | Cite as

The cosmological constant and the electroweak scale

  • Stefano AndrioloEmail author
  • Shing Yan Li
  • S.-H. Henry Tye
Open Access
Regular Article - Theoretical Physics
  • 41 Downloads

Abstract

String theory has no parameter except the string scale, so a dynamically compactified solution to 4 dimensional spacetime should determine both the Planck scale and the cosmological constant Λ. In the racetrack Kähler uplift flux compactification model in Type IIB theory, where the string theory landscape is generated by scanning over discrete values of all the flux parameters, a statistical preference for an exponentially small Λ is found to be natural [1]. Within this framework and matching the median Λ value to the observed Λ, a mass scale m ≃ 100 GeV naturally appears. We explain how the electroweak scale can be identified with this mass scale.

Keywords

Compactification and String Models Higgs Physics Effective Field Theories Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    Y. Sumitomo, S.H.H. Tye and S.S.C. Wong, Statistical Distribution of the Vacuum Energy Density in Racetrack Kähler Uplift Models in String Theory, JHEP07 (2013) 052 [arXiv:1305.0753] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl.208 (2013) 19 [arXiv:1212.5226] [INSPIRE].
  3. [3]
    V. Balasubramanian and P. Berglund, Stringy corrections to Kähler potentials, SUSY breaking and the cosmological constant problem, JHEP11 (2004) 085 [hep-th/0408054] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Westphal, de Sitter string vacua from Kähler uplifting, JHEP03 (2007) 102 [hep-th/0611332] [INSPIRE].
  5. [5]
    M. Rummel and A. Westphal, A sufficient condition for de Sitter vacua in type IIB string theory, JHEP01 (2012) 020 [arXiv:1107.2115] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    S. de Alwis and K. Givens, Physical Vacua in IIB Compactifications with a Single Kähler Modulus, JHEP10 (2011) 109 [arXiv:1106.0759] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Y. Sumitomo and S.H.H. Tye, A Stringy Mechanism for A Small Cosmological Constant — Multi-Moduli Cases, JCAP02 (2013) 006 [arXiv:1209.5086] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N.V. Krasnikov, On Supersymmetry Breaking in Superstring Theories, Phys. Lett.B 193 (1987) 37 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T.R. Taylor, Dilaton, gaugino condensation and supersymmetry breaking, Phys. Lett.B 252 (1990) 59 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    F. Denef, M.R. Douglas and B. Florea, Building a better racetrack, JHEP06 (2004) 034 [hep-th/0404257] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP06 (2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    S.H.H. Tye and S.S.C. Wong, Linking Light Scalar Modes with A Small Positive Cosmological Constant in String Theory, JHEP06 (2017) 094 [arXiv:1611.05786] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    Y. Sumitomo and S.H.H. Tye, A Stringy Mechanism for A Small Cosmological Constant, JCAP08 (2012) 032 [arXiv:1204.5177] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Lüst, S. Reffert, W. Schulgin and S. Stieberger, Moduli stabilization in type IIB orientifolds (I): Orbifold limits, Nucl. Phys.B 766 (2007) 68 [hep-th/0506090] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    D. Lüst, S. Reffert, E. Scheidegger, W. Schulgin and S. Stieberger, Moduli Stabilization in Type IIB Orientifolds (II), Nucl. Phys.B 766 (2007) 178 [hep-th/0609013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev.D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  17. [17]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime corrections to flux induced potentials, JHEP06 (2002) 060 [hep-th/0204254] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Bonetti and M. Weissenbacher, The Euler characteristic correction to the Kähler potential — revisited, JHEP01 (2017) 003 [arXiv:1608.01300] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Westphal, Eternal inflation with alpha-prime-corrections, JCAP11 (2005) 003 [hep-th/0507079] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Louis, M. Rummel, R. Valandro and A. Westphal, Building an explicit de Sitter, JHEP10 (2012) 163 [arXiv:1208.3208] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev.D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    L. Martucci, Warped Kähler potentials and fluxes, JHEP01 (2017) 056 [arXiv:1610.02403] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    B. Cownden, A.R. Frey, M.C.D. Marsh and B. Underwood, Dimensional Reduction for D3-brane Moduli, JHEP12 (2016) 139 [arXiv:1609.05904] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    F. Chen and H. Firouzjahi, Dynamics of D3-D7 Brane Inflation in Throats, JHEP11 (2008) 017 [arXiv:0807.2817] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    P.G. Camara, L.E. Ibáñez and A.M. Uranga, Flux induced SUSY breaking soft terms, Nucl. Phys.B 689 (2004) 195 [hep-th/0311241] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    S. Andriolo, S.Y. Li and S.H.H. Tye, String Landscape and Fermion Masses, arXiv:1902.06608 [INSPIRE].
  27. [27]
    S. Sethi, Supersymmetry Breaking by Fluxes, JHEP10 (2018) 022 [arXiv:1709.03554] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    A. Cole, A. Schachner and G. Shiu, Searching the Landscape of Flux Vacua with Genetic Algorithms, arXiv:1907.10072 [INSPIRE].
  29. [29]
    C. Vafa, The String landscape and the swampland, hep-th/0509212 [INSPIRE].
  30. [30]
    M. Dine and N. Seiberg, Is the Superstring Weakly Coupled?, Phys. Lett.162B (1985) 299 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, On the Cosmological Implications of the String Swampland, Phys. Lett.B 784 (2018) 271 [arXiv:1806.09718] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett.B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    G.L. Pimentel and J. Stout, Real-Time Corrections to the Effective Potential, arXiv:1905.00219 [INSPIRE].
  34. [34]
    Planck collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [INSPIRE].
  35. [35]
    L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev.D 95 (2017) 043541 [arXiv:1610.08297] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Jockey Club Institute for Advanced StudyHong Kong University of Science and TechnologyKowloonHong Kong
  2. 2.Department of PhysicsHong Kong University of Science and TechnologyKowloonHong Kong
  3. 3.Laboratory for Elementary-Particle PhysicsCornell UniversityIthacaU.S.A.

Personalised recommendations