Advertisement

Journal of High Energy Physics

, 2019:211 | Cite as

Structure constants from modularity in warped CFT

  • Wei Song
  • Jianfei XuEmail author
Open Access
Regular Article - Theoretical Physics
  • 27 Downloads

Abstract

We derive a universal formula for the asymptotic growth of the mean value of three-point coefficient for Warped Conformal Field Theories (WCFTs), and provide a holographic calculation in BTZ black holes. WCFTs are two dimensional quantum field theories featuring a chiral Virasoro and U(1) Kac-Moody algebra, and are conjectured to be holographically dual to quantum gravity on asymptotically AdS3 spacetime with Compère- Song-Strominger boundary conditions. The WCFT calculation amounts to the calculation of one-point functions on torus, whose high temperature limit can be approximated by using modular covariance of WCFT, similar to the derivation of Cardy formula. The bulk process is given by a tadpole diagram, with a massive spinning particle propagates from the infinity to the horizon, and splits into particle and antiparticle which annihilate after going around the horizon of BTZ black holes. The agreement between the bulk and WCFT calculations indicates that the black hole geometries in asymptotically AdS3 spacetimes can emerge upon coarse-graining over microstates in WCFTs, similar to the results of Kraus and Maloney in the context of AdS/CFT [1].

Keywords

AdS-CFT Correspondence Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    P. Kraus and A. Maloney, A cardy formula for three-point coefficients or how the black hole got its spots, JHEP05 (2017) 160 [arXiv:1608.03284] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    J.M. Bardeen and G.T. Horowitz, The Extreme Kerr throat geometry: A Vacuum analog of AdS2 × S 2 , Phys. Rev.D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M. Guica and A. Strominger, Microscopic Realization of the Kerr/CFT Correspondence, JHEP02 (2011) 010 [arXiv:1009.5039] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS3 Black Holes, JHEP03 (2009) 130 [arXiv:0807.3040] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev.D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    S. Detournay, T. Hartman and D.M. Hofman, Warped Conformal Field Theory, Phys. Rev.D 86 (2012) 124018 [arXiv:1210.0539] [INSPIRE].ADSGoogle Scholar
  7. [7]
    G. Compère, W. Song and A. Strominger, New Boundary Conditions for AdS3, JHEP05 (2013) 152 [arXiv:1303.2662] [INSPIRE].
  8. [8]
    G. Compère and S. Detournay, Semi-classical central charge in topologically massive gravity, Class. Quant. Grav.26 (2009) 012001 [Erratum ibid.26 (2009) 139801] [arXiv:0808.1911] [INSPIRE].
  9. [9]
    G. Compère and S. Detournay, Boundary conditions for spacelike and timelike warped AdS3 spaces in topologically massive gravity, JHEP08 (2009) 092 [arXiv:0906.1243] [INSPIRE].
  10. [10]
    G. Compère, M. Guica and M.J. Rodriguez, Two Virasoro symmetries in stringy warped AdS3 , JHEP12 (2014) 012 [arXiv:1407.7871] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D.M. Hofman and A. Strominger, Chiral Scale and Conformal Invariance in 2D Quantum Field Theory, Phys. Rev. Lett.107 (2011) 161601 [arXiv:1107.2917] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. El-Showk and M. Guica, Kerr/CFT, dipole theories and nonrelativistic CFTs, JHEP12 (2012) 009 [arXiv:1108.6091] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    W. Song and A. Strominger, Warped AdS3/Dipole-CFT Duality, JHEP05 (2012) 120 [arXiv:1109.0544] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Azeyanagi, D.M. Hofman, W. Song and A. Strominger, The Spectrum of Strings on Warped AdS3 × S 3 , JHEP04 (2013) 078 [arXiv:1207.5050] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Guica, An integrable Lorentz-breaking deformation of two-dimensional CFTs, SciPost Phys.5 (2018) 048 [arXiv:1710.08415] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Bzowski and M. Guica, The holographic interpretation of \( J\overline{T} \)-deformed CFTs, JHEP01 (2019) 198 [arXiv:1803.09753] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Chakraborty, A. Giveon and D. Kutasov, \( J\overline{T} \)deformed CFT2 and string theory, JHEP10 (2018) 057 [arXiv:1806.09667] [INSPIRE].
  18. [18]
    L. Apolo and W. Song, Strings on warped AdS3 via \( T\overline{J} \)deformations, JHEP10 (2018) 165 [arXiv:1806.10127] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Compère, W. Song and A. Strominger, Chiral Liouville Gravity, JHEP05 (2013) 154 [arXiv:1303.2660] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    D.M. Hofman and B. Rollier, Warped Conformal Field Theory as Lower Spin Gravity, Nucl. Phys.B 897 (2015) 1 [arXiv:1411.0672] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A. Castro, D.M. Hofman and G. Sárosi, Warped Weyl fermion partition functions, JHEP11 (2015) 129 [arXiv:1508.06302] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    K. Jensen, Locality and anomalies in warped conformal field theory, JHEP12 (2017) 111 [arXiv:1710.11626] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography, Phys. Rev.B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P. Chaturvedi, Y. Gu, W. Song and B. Yu, A note on the complex SYK model and warped CFTs, JHEP12 (2018) 101 [arXiv:1808.08062] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys.76 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [INSPIRE].Google Scholar
  27. [27]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys.B 241 (1984) 333 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    W. Song and J. Xu, Correlation Functions of Warped CFT, JHEP04 (2018) 067 [arXiv:1706.07621] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    S. Detournay and M. Guica, Stringy Schrödinger truncations, JHEP08 (2013) 121 [arXiv:1212.6792] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Castro, D.M. Hofman and N. Iqbal, Entanglement Entropy in Warped Conformal Field Theories, JHEP02 (2016) 033 [arXiv:1511.00707] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    W. Song, Q. Wen and J. Xu, Modifications to Holographic Entanglement Entropy in Warped CFT, JHEP02 (2017) 067 [arXiv:1610.00727] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    T. Azeyanagi, S. Detournay and M. Riegler, Warped Black Holes in Lower-Spin Gravity, Phys. Rev.D 99 (2019) 026013 [arXiv:1801.07263] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    B. Chen, P.-X. Hao and W. Song, Rényi Mutual Information in Holographic Warped CFTs, arXiv:1904.01876 [INSPIRE].
  34. [34]
    L. Apolo, S. He, W. Song, J. Xu and J. Zheng, Entanglement and chaos in warped conformal field theories, JHEP04 (2019) 009 [arXiv:1812.10456] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    P. Kraus, A. Maloney, H. Maxfield, G.S. Ng and J.-q. Wu, Witten Diagrams for Torus Conformal Blocks, JHEP09 (2017) 149 [arXiv:1706.00047] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks, JHEP01 (2016) 146 [arXiv:1508.00501] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    A. Castro, S. Detournay, N. Iqbal and E. Perlmutter, Holographic entanglement entropy and gravitational anomalies, JHEP07 (2014) 114 [arXiv:1405.2792] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Deser, R. Jackiw and G. ’t Hooft, Three-Dimensional Einstein Gravity: Dynamics of Flat Space, Annals Phys.152 (1984) 220 [INSPIRE].
  39. [39]
    S. Deser and R. Jackiw, Three-Dimensional Cosmological Gravity: Dynamics of Constant Curvature, Annals Phys.153 (1984) 405 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    A. Castro, C. Keeler and P. Szepietowski, Tweaking one-loop determinants in AdS3, JHEP10 (2017) 070 [arXiv:1707.06245] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    L. Apolo and W. Song, Bootstrapping holographic warped CFTs or: how I learned to stop worrying and tolerate negative norms, JHEP07 (2018) 112 [arXiv:1804.10525] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    D. Das, S. Datta and S. Pal, Charged structure constants from modularity, JHEP11 (2017) 183 [arXiv:1706.04612] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Yau Mathematical Sciences CenterTsinghua UniversityBeijingChina
  2. 2.Shing-Tung Yau Center and School of MathematicsSoutheast UniversityNanjingChina

Personalised recommendations